Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on body parts’ sensitivity to environmental changes

22.11.2011
Research by a team of Michigan State University scientists has shed new light on why some body parts are more sensitive to environmental change than others, work that could someday lead to better ways of treating a variety of diseases, including Type-2 diabetes.

The research, led by assistant zoology professor Alexander Shingleton, is detailed in the recent issue of the Proceedings of the Library of Science Genetics.

In particular, Shingleton is studying the genetics of fruit flies and zeroing in on why some of the insects’ body parts will grow to full size even when suffering from malnutrition, while others will not. He uses fruit flies because they use the same genes to control this process as humans.

“The developmental mechanisms by which these changes in body proportion are regulated are really unknown,” Shingleton said.

Shingleton said that in humans, a person’s brain will grow to near full size despite malnutrition or other environmental, or nongenetic, problems.

If scientists can figure out why some organs or body parts are either overly sensitive or insensitive to environmental factors, then it’s possible that therapies could be developed to deal with any number of maladies.

“If we know how we can control sensitivity to environmental issues such as malnutrition, we can, in principle, manipulate genes that are regulating that sensitivity,” Shingleton said. “Genes can be activated so they can actually restore sensitivity.”

Type-2 diabetes is a good example of the body’s insensitivity to nongenetic issues. The most common form of diabetes, Type-2, occurs when the body becomes insensitive to insulin, which is released in response to blood sugar levels. The body needs insulin to be able to use glucose for energy.

“In diabetes, that response is suppressed,” Shingleton said. “We get desensitization. We know people become insulin resistant, but we’re not quite sure why.”

What Shingleton and colleagues discovered is that even when malnourished, the genitals of a male fruit fly continue to grow to normal size.

“The same developmental mechanism that a fly uses to make its genitals insensitive to changes in nutrition may be the same that we as humans use to modulate the responsiveness of individual body parts to changes in nutrition,” he said. “Our job is to try to understand why some body parts are responsive to changes in nutrition and others aren’t.”

Using the fruit fly for this type of research “gives us enormous information about how we as humans work and how we respond to our environment,” Shingleton said. “This provides information on biomedical issues that arise from things like malnutrition or insulin resistance.”

Shingleton’s research is funded by the National Science Foundation and MSU’s Bio/computational and Evolution in Action Consortium, or BEACON.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>