Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research on seaweeds shows it takes more than being flexible to survive crashing waves

11.05.2012
Bladed and branched algae adapted to strong wave conditions are able to reconfigure their shape and size

Seaweeds are important foundational species that are vital both as food and habitat to many aquatic and terrestrial shore organisms.


This image shows seaweeds reconfiguring in flow, viewed from downstream.
Credit: Courtesy of Patrick Martone, University
f British Columbia

Yet seaweeds that cling to rocky shores are continually at risk of being broken or dislodged from their holds by crashing waves with large hydrodynamic forces. So how do such seaweeds survive in intertidal zones? Do they have special properties that make them extremely flexible or particularly strong?

Patrick Martone (University of British Columbia) has spent a considerable amount of time standing on the shore watching big waves crash against intertidal rocks and wondering how the seaweeds—or anything else—manage to survive there.

"Many animals can run and hide when storms roll in and the waves increase," Martone observes. "But seaweeds don't have that option; they have to just hold on tight and face the waves head-on."

Indeed, the drift algae that pile up on the beach after a big storm suggest that not all algae are able to survive such onslaughts.

"So what is special about the ones that do survive?"

Previous research has found that one solution seaweeds have come up with is flexibility. Blades of seaweed may curl up and branches may collapse, thereby changing the shape of the seaweed and reducing drag as water velocity increases. But different seaweeds may utilize different strategies to effectively reduce drag, such that some may be better at changing shape and others at reducing size. Martone and colleagues from Stanford University and St. John Fisher College were interested in teasing apart some of these variables and published their findings recently in the American Journal of Botany.

By exploring the dynamics of size and shape changes of intertidal seaweeds at different rates of water flow, Martone and co-authors hoped to better understand the various strategies that have led to the morphological diversity in macroalgae seen along wave-swept shores.

The authors collected fronds from six different species of algae (four branched, two bladed) along the intertidal zone of the central Californian coast, placed them in a recirculating water flume, and measured the drag they experienced and the changes in shape and size they underwent under 15 different rates of water flow, ranging from 0 to 4 m/sec.

Interestingly, they found that while all six species of seaweed underwent severe reconfiguration as water velocity increased—thus limiting the drag they would otherwise experience if they were rigid—the two types of algae accomplished this in slightly different ways.

"Unbranched algae seem to be 'shape changers,' reducing drag primarily by folding and collapsing in flow," notes Martone. "Certain branched algae, on the other hand, are 'area reducers,' compensating for drag-prone shapes by reducing frond size through branch reorientation and compression. Thus, we demonstrate that flexibility acts in two distinct ways: permitting wave-swept algae to change shape and to reduce frond area projected into the flow."

Martone and colleagues also wanted to see how accurately responses at slow speeds of water flow could be extrapolated to what happens at higher speeds, such as what the seaweeds might be experiencing along the shore.

"Most structural engineers have it easy," Martone says. "Studying air flow around airplane wings or water flow around bridges is relatively straightforward, since these man-made structures are rigid and do not deform in flow. Seaweeds are more complicated because they are flexible. As flow speeds increase, flexible seaweeds re-orient and reconfigure, changing size and shape to reduce drag, making predictions much more difficult."

Indeed, the authors found that measurements extrapolated out from lower speeds did not always match those observed at higher speeds, making it tricky to predict what would happen at higher water velocities. Moreover, in the experimental water flume seaweeds may have more time to react to water speeds that are relatively slow compared with breaking waves—a condition whereby fast reaction times may be crucial for reconfiguring and reducing drag.

"Understanding how selection can act on the ability to change shape or the ability to reduce size in flow may give us insight into the morphological evolution of intertidal algae," summarizes Martone.

Martone concludes that further investigation is still needed to tease these features apart: "We have started building flexible models of branched and unbranched seaweeds in the lab to explore how precise changes in branching affect drag. We hope this work will help us better understand how waves have sculpted seaweeds over evolutionary time."

Patrick T. Martone, Laurie Kost, and Michael Boller. 2012. Drag reduction in wave-swept macroalgae: Alternative strategies and new predictions. American Journal of Botany 99(5): 806-815. DOI: 10.3732/ajb.1100541

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/99/5/806.full.pdf+html. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>