Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research on seaweeds shows it takes more than being flexible to survive crashing waves

Bladed and branched algae adapted to strong wave conditions are able to reconfigure their shape and size

Seaweeds are important foundational species that are vital both as food and habitat to many aquatic and terrestrial shore organisms.

This image shows seaweeds reconfiguring in flow, viewed from downstream.
Credit: Courtesy of Patrick Martone, University
f British Columbia

Yet seaweeds that cling to rocky shores are continually at risk of being broken or dislodged from their holds by crashing waves with large hydrodynamic forces. So how do such seaweeds survive in intertidal zones? Do they have special properties that make them extremely flexible or particularly strong?

Patrick Martone (University of British Columbia) has spent a considerable amount of time standing on the shore watching big waves crash against intertidal rocks and wondering how the seaweeds—or anything else—manage to survive there.

"Many animals can run and hide when storms roll in and the waves increase," Martone observes. "But seaweeds don't have that option; they have to just hold on tight and face the waves head-on."

Indeed, the drift algae that pile up on the beach after a big storm suggest that not all algae are able to survive such onslaughts.

"So what is special about the ones that do survive?"

Previous research has found that one solution seaweeds have come up with is flexibility. Blades of seaweed may curl up and branches may collapse, thereby changing the shape of the seaweed and reducing drag as water velocity increases. But different seaweeds may utilize different strategies to effectively reduce drag, such that some may be better at changing shape and others at reducing size. Martone and colleagues from Stanford University and St. John Fisher College were interested in teasing apart some of these variables and published their findings recently in the American Journal of Botany.

By exploring the dynamics of size and shape changes of intertidal seaweeds at different rates of water flow, Martone and co-authors hoped to better understand the various strategies that have led to the morphological diversity in macroalgae seen along wave-swept shores.

The authors collected fronds from six different species of algae (four branched, two bladed) along the intertidal zone of the central Californian coast, placed them in a recirculating water flume, and measured the drag they experienced and the changes in shape and size they underwent under 15 different rates of water flow, ranging from 0 to 4 m/sec.

Interestingly, they found that while all six species of seaweed underwent severe reconfiguration as water velocity increased—thus limiting the drag they would otherwise experience if they were rigid—the two types of algae accomplished this in slightly different ways.

"Unbranched algae seem to be 'shape changers,' reducing drag primarily by folding and collapsing in flow," notes Martone. "Certain branched algae, on the other hand, are 'area reducers,' compensating for drag-prone shapes by reducing frond size through branch reorientation and compression. Thus, we demonstrate that flexibility acts in two distinct ways: permitting wave-swept algae to change shape and to reduce frond area projected into the flow."

Martone and colleagues also wanted to see how accurately responses at slow speeds of water flow could be extrapolated to what happens at higher speeds, such as what the seaweeds might be experiencing along the shore.

"Most structural engineers have it easy," Martone says. "Studying air flow around airplane wings or water flow around bridges is relatively straightforward, since these man-made structures are rigid and do not deform in flow. Seaweeds are more complicated because they are flexible. As flow speeds increase, flexible seaweeds re-orient and reconfigure, changing size and shape to reduce drag, making predictions much more difficult."

Indeed, the authors found that measurements extrapolated out from lower speeds did not always match those observed at higher speeds, making it tricky to predict what would happen at higher water velocities. Moreover, in the experimental water flume seaweeds may have more time to react to water speeds that are relatively slow compared with breaking waves—a condition whereby fast reaction times may be crucial for reconfiguring and reducing drag.

"Understanding how selection can act on the ability to change shape or the ability to reduce size in flow may give us insight into the morphological evolution of intertidal algae," summarizes Martone.

Martone concludes that further investigation is still needed to tease these features apart: "We have started building flexible models of branched and unbranched seaweeds in the lab to explore how precise changes in branching affect drag. We hope this work will help us better understand how waves have sculpted seaweeds over evolutionary time."

Patrick T. Martone, Laurie Kost, and Michael Boller. 2012. Drag reduction in wave-swept macroalgae: Alternative strategies and new predictions. American Journal of Botany 99(5): 806-815. DOI: 10.3732/ajb.1100541

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at After this date, reporters may contact Richard Hund at for a copy of the article.

The Botanical Society of America is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at

Richard Hund | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>