Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Scientists Home In on Chemicals Needed to Reprogram Cells

06.12.2010
For Immediate Release – Scripps Research Institute scientists have made a significant leap forward in the drive to find a way to safely reprogram mature human cells and turn them into stem cells, which can then change into other cell types, such as nerve, heart, and liver cells. The ability to transform fully mature adult cells such as skin cells into stem cells has potentially profound implications for treating many diseases.

In research published in the December 3, 2010 issue of Cell Stem Cell, Scripps Research Associate Professor Sheng Ding, PhD, reports a novel cocktail of drug-like small molecules that, with the assistance of a gene called Oct4, enables reprogramming of human skin cells into stem cells.

“Our ultimate goal is to generate induced pluripotent stem cells with defined small molecules,” Ding said. “This would offer a fundamentally new method and significant advantages over previous methods, such as genetic manipulation or more difficult-to-manufacture biologics.”

Using small-molecule compounds to reprogram adult human cells back to their pluripotent state — able to change into all other cell types — avoids the ethical controversy around embryonic stem cell research, and paves the way for the large-scale production of stem cells that could be used inexpensively and consistently in drug development. Cures for Alzheimer’s, Parkinson’s, and many other diseases might be possible if new cells could be created from a patient’s own cells to replace those that have succumbed to disease or injury.

Substituting Chemicals for Genes

Scientists discovered in 2007 that fully differentiated mature cells, such as skin cells, could be “reprogrammed” to become pluripotent by using four transcription genes. One problem with this technique is that these genes, once inserted into a cell, permanently alter the host cell’s DNA.

“There are many concerns when the host cell’s genome is manipulated,” Ding says. “One major worry is that since the four genes are [cancer-causing] oncogenes, they could induce tumors or interrupt functions of other normal genes.”

Because of this danger, scientists have been searching for methods that could induce reprogramming without the use of these cancer-causing genes. The method the Ding lab has been pioneering — using small, synthetic molecules — represents a fundamentally different approach from the previous methods.

“We are working toward creating drugs that are totally chemically defined, where we know every single component and precisely what it does, without causing genetic damage,” Ding says.

Breaking New Ground

Scientists have known for at least 50 years that a cell’s identity is reversible if given the right signal — cells go forward to become mature, functional cells or they can go backward to become primitive cells. In order for cellular reprogramming to be safe and practical enough to use in cell therapy, researchers have sought an efficient, reliable way to trigger the reprogramming process.

In 2008, the Ding lab reported finding small molecules that could replace two of the required four genes. Now, two years later, through extraordinary effort and unique screening strategy, the lab made a major leap forward by finding a way to replace three out of the four genes.

“We are only one step away from the ultimate goal, which would represent a revolutionary technology,” Ding says.

The new study also revealed that the novel compound facilitates a novel mechanism in reprogramming: the metabolic switch from mitochondrial respiration to glycolysis, an important mechanism for tissue regeneration. The small molecules Ding and his colleagues found promote reprogramming by facilitating such metabolic switching — an entirely new understanding of reprogramming.

A future goal is to replace Oct4, a master regulator of pluripotency, in the chemical cocktail. “ That would be the last step toward achieving the Holy Grail,” Ding says. “Our latest discovery brings us one step closer to this dream.”

The first author of the paper, “Reprogramming of Human Primary Somatic Cells by OCT4 and Chemical Compounds,” is Saiyong Zhu of The Scripps Research Institute. In addition to Ding and Zhu, other authors include Wenlin Li, Hongyan Zhou, Wanguo Wei, Rajesh Ambasudhan, Tongxiang Lin, and Janghwan Kim, also of Scripps Research, and Kang Zhang of the Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California, San Diego, La Jolla. See http://www.cell.com/cell-stem-cell/fulltext/S1934-5909%2810%2900637-5

Sheng Ding is supported by funding from Fate Therapeutics, California Institute for Regenerative Medicine, the National Institutes of Health (NICHD, NHLBI, and NIMH), Prostate Cancer Foundation, Esther B. O’Keeffe Foundation, and The Scripps Research Institute. Kang Zhang is supported by grants from National Eye Institute/National Institute of Health, VA Merit Award, the Macula Vision Research Foundation, Research to Prevent Blindness, Burroughs Wellcome Fund Clinical Scientist Award in Translational Research, and Dick and Carol Hertzberg Fund.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida. For more information, see www.scripps.edu.

Mika Ono | Newswise Science News
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>