Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Scientists Home In on Chemicals Needed to Reprogram Cells

06.12.2010
For Immediate Release – Scripps Research Institute scientists have made a significant leap forward in the drive to find a way to safely reprogram mature human cells and turn them into stem cells, which can then change into other cell types, such as nerve, heart, and liver cells. The ability to transform fully mature adult cells such as skin cells into stem cells has potentially profound implications for treating many diseases.

In research published in the December 3, 2010 issue of Cell Stem Cell, Scripps Research Associate Professor Sheng Ding, PhD, reports a novel cocktail of drug-like small molecules that, with the assistance of a gene called Oct4, enables reprogramming of human skin cells into stem cells.

“Our ultimate goal is to generate induced pluripotent stem cells with defined small molecules,” Ding said. “This would offer a fundamentally new method and significant advantages over previous methods, such as genetic manipulation or more difficult-to-manufacture biologics.”

Using small-molecule compounds to reprogram adult human cells back to their pluripotent state — able to change into all other cell types — avoids the ethical controversy around embryonic stem cell research, and paves the way for the large-scale production of stem cells that could be used inexpensively and consistently in drug development. Cures for Alzheimer’s, Parkinson’s, and many other diseases might be possible if new cells could be created from a patient’s own cells to replace those that have succumbed to disease or injury.

Substituting Chemicals for Genes

Scientists discovered in 2007 that fully differentiated mature cells, such as skin cells, could be “reprogrammed” to become pluripotent by using four transcription genes. One problem with this technique is that these genes, once inserted into a cell, permanently alter the host cell’s DNA.

“There are many concerns when the host cell’s genome is manipulated,” Ding says. “One major worry is that since the four genes are [cancer-causing] oncogenes, they could induce tumors or interrupt functions of other normal genes.”

Because of this danger, scientists have been searching for methods that could induce reprogramming without the use of these cancer-causing genes. The method the Ding lab has been pioneering — using small, synthetic molecules — represents a fundamentally different approach from the previous methods.

“We are working toward creating drugs that are totally chemically defined, where we know every single component and precisely what it does, without causing genetic damage,” Ding says.

Breaking New Ground

Scientists have known for at least 50 years that a cell’s identity is reversible if given the right signal — cells go forward to become mature, functional cells or they can go backward to become primitive cells. In order for cellular reprogramming to be safe and practical enough to use in cell therapy, researchers have sought an efficient, reliable way to trigger the reprogramming process.

In 2008, the Ding lab reported finding small molecules that could replace two of the required four genes. Now, two years later, through extraordinary effort and unique screening strategy, the lab made a major leap forward by finding a way to replace three out of the four genes.

“We are only one step away from the ultimate goal, which would represent a revolutionary technology,” Ding says.

The new study also revealed that the novel compound facilitates a novel mechanism in reprogramming: the metabolic switch from mitochondrial respiration to glycolysis, an important mechanism for tissue regeneration. The small molecules Ding and his colleagues found promote reprogramming by facilitating such metabolic switching — an entirely new understanding of reprogramming.

A future goal is to replace Oct4, a master regulator of pluripotency, in the chemical cocktail. “ That would be the last step toward achieving the Holy Grail,” Ding says. “Our latest discovery brings us one step closer to this dream.”

The first author of the paper, “Reprogramming of Human Primary Somatic Cells by OCT4 and Chemical Compounds,” is Saiyong Zhu of The Scripps Research Institute. In addition to Ding and Zhu, other authors include Wenlin Li, Hongyan Zhou, Wanguo Wei, Rajesh Ambasudhan, Tongxiang Lin, and Janghwan Kim, also of Scripps Research, and Kang Zhang of the Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California, San Diego, La Jolla. See http://www.cell.com/cell-stem-cell/fulltext/S1934-5909%2810%2900637-5

Sheng Ding is supported by funding from Fate Therapeutics, California Institute for Regenerative Medicine, the National Institutes of Health (NICHD, NHLBI, and NIMH), Prostate Cancer Foundation, Esther B. O’Keeffe Foundation, and The Scripps Research Institute. Kang Zhang is supported by grants from National Eye Institute/National Institute of Health, VA Merit Award, the Macula Vision Research Foundation, Research to Prevent Blindness, Burroughs Wellcome Fund Clinical Scientist Award in Translational Research, and Dick and Carol Hertzberg Fund.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida. For more information, see www.scripps.edu.

Mika Ono | Newswise Science News
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>