Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Reveals Ventriloquism in Motion: How Sound Can Move Light

22.08.2008
Research led by Dr Elliot Freeman, lecturer in psychology at Brunel University’s School of Social Sciences, published this week in Current Biology, confirms that what we see can sometimes depend as much on our ears as on our eyes.

The study, conducted in conjunction with Prof. Jon Driver at University College London, revealed that the perceived direction of motion from a given visual object (in this case, red bars across a screen), depends on minute variations in the timing of an accompanying sound (a sequence of beeps, for example). This provides evidence that the brain’s integration of these visual and audio cues occurs at a very early stage of processing.

Every day examples of audio-visual integration include our ability to identify who is saying what in a noisy crowd and the illusion that sound comes directly from the an actor’s lips seen on a television, rather than from the loudspeakers; the latter is the well-known ‘Ventriloquist Effect’, where seeing influences the location of sounds.

The audiovisual illusion revealed by this new research could be dubbed ‘reverse ventriloquism in motion’, as it shows that sound affects what we see. This might explain why if we watch dancing without sound, the dancers appear to have no rhythm; and why the sound of a ball hitting a racket can help us to determine the direction of the ball in a game of tennis even though the ball moves faster that the camera or eye can track.

Dr. Freeman believes that his research could have profound implications for the understanding of the neural processes that underlie multisensory perception. This knowledge could be applied in a number of industries: “The illusion could be applied to novel displays that change their appearance depending on sound, which may be of use in advertising or providing an eye-catching multisensory warning or alert in safety-critical applications. It may also eventually be useful in detecting and diagnosing subtle perceptual differences thought to be characteristic of certain clinical conditions such as dyslexia and autistic spectrum.”

Rachel Cummings | alfa
Further information:
http://www.brunel.ac.uk

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>