Research Reveals Unexpected Benefits of Living in a Changing Climate

Working with Ian Johnston at the University of St Andrews in Scotland, Scott has found that raising zebrafish at warmer temperatures as embryos actually improves their ability to adjust to both higher and lower temperatures as adults.

Their research shows the fish are hardier after being raised in a warm-water nursery, and raises the question of how far the temperature can rise before the advantage becomes a liability, as inevitably it will, Scott says.

“What limits are there to their coping abilities? That’s what we’re really trying to understand,” says Scott, a specialist in animals’ adaptation to challenging environments.

“If we want to appreciate how the natural world is affected by climate change, that’s what we need to know.”

The research appears in the Proceedings of the National Academy of Sciences.

Zebrafish are native to freshwater habitats of Southern Asia, and over their lives can experience a range of temperatures from almost 40 C to nearly freezing. The fish under study were raised across the range of temperatures they would normally experience in their natural breeding season (22 C to 32 C).

The biology of zebrafish – especially their short gestation period – makes them ideal research subjects.

Scott and Johnston found that when embryos raised in warm water experienced temperature variation as adults, they could swim faster, their muscle was better suited for aerobic exercise, and they expressed at higher levels many of the genes that contribute to exercise performance.

The improvements were true for the adult fish in warmer and colder water alike – a finding that surprised the researchers.

“We thought that they might do better under warmer conditions because they grew up in warmer conditions. We didn’t think they’d also do better under colder conditions, but they did.”

A photo of Graham Scott with a zebrafish is available here: http://tiny.cc/a080iw. (Photo by JD Howell.)

A photo of zebrafish embryos, taken 28 hours after fertilization (a little over a third of the way through embryonic development), is available here: http://tiny.cc/ebh1iw . (Photo by Ian Johnston.)

For more information, please contact:

Wade Hemsworth
Public Relations Manager
McMaster University
905-525-9140 ext. 27988
hemswor@mcmaster.ca
Michelle Donovan
Public Relations Manager
McMaster University
905-525-9140 ext. 22869
donovam@mcmaster.ca

Media Contact

Wade Hemsworth Newswise Science News

More Information:

http://www.mcmaster.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors