Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals new depths of complexity in nerve cells

25.03.2014

Research from the Oklahoma Medical Research Foundation reveals a new complexity to nerve cells in the brain that could affect future therapies aimed at altering mood and memory in humans.

OMRF scientist Kenneth Miller, Ph.D., studied the function of a common protein (known as CaM Kinase II) in tiny roundworms called C. elegans. His research appears in the latest issue of the journal Genetics.  

“CaM Kinase II is very abundant in the brain, so it has been heavily studied,” Miller said. “But this is the first time anybody has seen results like this.”

Using a method called “forward genetics,” Miller’s lab randomly screened thousands of mutant worms for defects in neuropeptide storage and unexpectedly identified mutant worms lacking CaM Kinase II. Further analysis revealed that CaM Kinase II plays a significant role in controlling when and where neuropeptides are released from neurons.

Neuropeptides are small protein-like molecules that nerve cells in the brain use to communicate with each other. Disruptions in that communication can affect learning, memory, social behaviors and mood.

They are created and stored in containers called dense-core vesicles. Under normal conditions they are only released from those containers in response to appropriate signals in the brain.

“We tagged the neuropeptides with a fluorescent protein so we could see where they went,” Miller said. “In the worms that were missing the gene that makes CaM Kinase II, the neuropeptides were virtually missing altogether in the parts of the neurons where we expected them.”

That’s because without the protein, the dense core vesicles couldn’t hold onto the neuropeptides. Instead they were all released before they got transported to their storage location, he said. In humans, such an event would be extremely unpredictable, possibly even causing a psychotic episode, Miller said.

“This is a very significant demonstration of how neurons and likely other neuroendocrine cells package neuropeptides, move them around the cell, and release them where they will be most effective,” said Michael Sesma, Ph.D., of the National Institute of Health’s National Institute of General Medical Sciences, which partially funded the research. “The high-resolution visualization inside entire living neurons achieved by Dr. Miller and his colleagues is a technical tour de force, and also demonstrates the enormous value of the genetic model system C. elegans for studying the internal workings of living cells.”

By understanding more about how neurons work, Miller said physicians and drug developers will be able to finely hone their targets when working with patients.

“Before this research, we didn’t even know that neurons had this special mechanism to control neuropeptide function,” he said. “This is why we do basic research. This is why it’s important to understand how neurons work, down to the subcellular and molecular levels.”

Research for this paper was funded by NIGMS grant No. GM080765.

Greg Elwell | EurekAlert!
Further information:
http://omrf.org/2014/03/20/research-reveals-new-depths-of-complexity-in-nerve-cells/

Further reports about: Genetics Kinase internal mechanism neuropeptides protein signals

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>