Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals new depths of complexity in nerve cells

25.03.2014

Research from the Oklahoma Medical Research Foundation reveals a new complexity to nerve cells in the brain that could affect future therapies aimed at altering mood and memory in humans.

OMRF scientist Kenneth Miller, Ph.D., studied the function of a common protein (known as CaM Kinase II) in tiny roundworms called C. elegans. His research appears in the latest issue of the journal Genetics.  

“CaM Kinase II is very abundant in the brain, so it has been heavily studied,” Miller said. “But this is the first time anybody has seen results like this.”

Using a method called “forward genetics,” Miller’s lab randomly screened thousands of mutant worms for defects in neuropeptide storage and unexpectedly identified mutant worms lacking CaM Kinase II. Further analysis revealed that CaM Kinase II plays a significant role in controlling when and where neuropeptides are released from neurons.

Neuropeptides are small protein-like molecules that nerve cells in the brain use to communicate with each other. Disruptions in that communication can affect learning, memory, social behaviors and mood.

They are created and stored in containers called dense-core vesicles. Under normal conditions they are only released from those containers in response to appropriate signals in the brain.

“We tagged the neuropeptides with a fluorescent protein so we could see where they went,” Miller said. “In the worms that were missing the gene that makes CaM Kinase II, the neuropeptides were virtually missing altogether in the parts of the neurons where we expected them.”

That’s because without the protein, the dense core vesicles couldn’t hold onto the neuropeptides. Instead they were all released before they got transported to their storage location, he said. In humans, such an event would be extremely unpredictable, possibly even causing a psychotic episode, Miller said.

“This is a very significant demonstration of how neurons and likely other neuroendocrine cells package neuropeptides, move them around the cell, and release them where they will be most effective,” said Michael Sesma, Ph.D., of the National Institute of Health’s National Institute of General Medical Sciences, which partially funded the research. “The high-resolution visualization inside entire living neurons achieved by Dr. Miller and his colleagues is a technical tour de force, and also demonstrates the enormous value of the genetic model system C. elegans for studying the internal workings of living cells.”

By understanding more about how neurons work, Miller said physicians and drug developers will be able to finely hone their targets when working with patients.

“Before this research, we didn’t even know that neurons had this special mechanism to control neuropeptide function,” he said. “This is why we do basic research. This is why it’s important to understand how neurons work, down to the subcellular and molecular levels.”

Research for this paper was funded by NIGMS grant No. GM080765.

Greg Elwell | EurekAlert!
Further information:
http://omrf.org/2014/03/20/research-reveals-new-depths-of-complexity-in-nerve-cells/

Further reports about: Genetics Kinase internal mechanism neuropeptides protein signals

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>