Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals molecular pathway behind invasive prostate cancers

20.05.2009
University of Cincinnati (UC) cancer and cell biologists have identified a new molecular pathway key to the development of invasive prostate cancers.

In a preclinical study led by Maria Diaz-Meco, PhD, the UC team found that simultaneous inactivation of two particular genes—known as PTEN and Par-4—caused the rapid development of invasive prostate cancer tumors in mice.

"We knew that independent mutations in either of these genes could result in benign tumors, but when those changes occur simultaneously it appears to have a synergistic effect that causes prostate cancer," explains Diaz-Meco, an associate professor of cancer and cell biology at UC and corresponding author of the paper. "This switch affects the cell's ability to both grow and survive, leading to more aggressive and invasive tumors."

"This is an important discovery because—until now—those signaling pathways were not clearly defined. Without a clear molecular target, it's impossible to develop effective drugs to treat this disease without causing harm to the patient," she adds.

Diaz-Meco and her team report their findings online ahead of print in Proceedings of National Academy of Sciences (PNAS) the week of May 18.

PTEN is a well-defined gene shown to be suppressed in prostate cancer tumors, as well as in other types of cancer. Its mutation has been shown to result in the formation of benign tumors. Par-4 gene is also mutated in prostate cancer, but this study is the first to report its relationship with PTEN mutations and aggressive prostate cancer tumor development.

The UC study was done in a laboratory mouse model over the course of two years. Data from the mouse model was correlated and compared to human prostate cancer tissue samples to determine if their findings were applicable in humans as well.

"Theoretically, this new knowledge could be used to better categorize a tumor's aggressiveness by measuring the levels of PTEN and Par-4 expressed in a tissue biopsy," adds Diaz-Meco. "That would help clinicians make tough decisions about how aggressively to treat a patient's prostate cancer and minimize unnecessary treatment."

Cancer and cell biologists are working on identifying the molecular targets involved in cancer progression to develop a better understand the mechanisms of action that lead to prostate cancer so that pharmaceutical companies and clinicians can develop better methods of diagnosing and treating the disease.

Funding for this study comes from the National Cancer Institute and National Institutes of Health. Coauthors of the study include UC's Shadi Abu-Baker, Jayashree Joshi, Anita Galvez, Elias Castilla, and Jorge Moscat, PhD. Spanish National Cancer Research Center's scientists Pablo Fernandez-Marcos, Marta Canamero, Manuel Collado, Gema Moreno-Bueno and Manuel Serrano and Carmen Saez of the Biotechnology Centre of Oslo in Norway also contributed to the study.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>