Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals molecular pathway behind invasive prostate cancers

20.05.2009
University of Cincinnati (UC) cancer and cell biologists have identified a new molecular pathway key to the development of invasive prostate cancers.

In a preclinical study led by Maria Diaz-Meco, PhD, the UC team found that simultaneous inactivation of two particular genes—known as PTEN and Par-4—caused the rapid development of invasive prostate cancer tumors in mice.

"We knew that independent mutations in either of these genes could result in benign tumors, but when those changes occur simultaneously it appears to have a synergistic effect that causes prostate cancer," explains Diaz-Meco, an associate professor of cancer and cell biology at UC and corresponding author of the paper. "This switch affects the cell's ability to both grow and survive, leading to more aggressive and invasive tumors."

"This is an important discovery because—until now—those signaling pathways were not clearly defined. Without a clear molecular target, it's impossible to develop effective drugs to treat this disease without causing harm to the patient," she adds.

Diaz-Meco and her team report their findings online ahead of print in Proceedings of National Academy of Sciences (PNAS) the week of May 18.

PTEN is a well-defined gene shown to be suppressed in prostate cancer tumors, as well as in other types of cancer. Its mutation has been shown to result in the formation of benign tumors. Par-4 gene is also mutated in prostate cancer, but this study is the first to report its relationship with PTEN mutations and aggressive prostate cancer tumor development.

The UC study was done in a laboratory mouse model over the course of two years. Data from the mouse model was correlated and compared to human prostate cancer tissue samples to determine if their findings were applicable in humans as well.

"Theoretically, this new knowledge could be used to better categorize a tumor's aggressiveness by measuring the levels of PTEN and Par-4 expressed in a tissue biopsy," adds Diaz-Meco. "That would help clinicians make tough decisions about how aggressively to treat a patient's prostate cancer and minimize unnecessary treatment."

Cancer and cell biologists are working on identifying the molecular targets involved in cancer progression to develop a better understand the mechanisms of action that lead to prostate cancer so that pharmaceutical companies and clinicians can develop better methods of diagnosing and treating the disease.

Funding for this study comes from the National Cancer Institute and National Institutes of Health. Coauthors of the study include UC's Shadi Abu-Baker, Jayashree Joshi, Anita Galvez, Elias Castilla, and Jorge Moscat, PhD. Spanish National Cancer Research Center's scientists Pablo Fernandez-Marcos, Marta Canamero, Manuel Collado, Gema Moreno-Bueno and Manuel Serrano and Carmen Saez of the Biotechnology Centre of Oslo in Norway also contributed to the study.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>