Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals key interaction that opens the channel into the cell's nucleus

08.06.2015

Cells have devised many structures for transporting molecular cargo across their protective borders, but the nuclear pore complex, with its flower-like, eight-fold symmetry, stands out. Monstrously large by cellular standards, as well as versatile, this elaborate portal controls access to and exit from the headquarters of the cell, the nucleus.

In research published June 4 in Cell, Rockefeller University scientists have uncovered crucial steps in the dynamic dance that dilates and constricts the nuclear pore complex -- the latest advance in their ongoing efforts to tease apart the mechanism by which its central channel admits specific molecules. Their work, based on quantitative biophysical data, has revealed that the nuclear pore complex is much more than the inert structure it was once thought to be.


The octagonal center ring of the nuclear pore complex opens when nucleoporin 58 (red) interacts with nucleoporin 54 (blue), then constricts as they separate. New research shows unstructured regions of 58 (squiggly filaments) interact with transport factors (green). This interaction makes the dilated conformation more favorable, pushing the ring to open.

Credit: The Laboratory of Cell Biology

"Prevailing wisdom cast the nuclear pore complex as a rigid conduit. Instead, we have found that it responds to the need for transport, opening and closing in an elegantly simple cycle," says study author Gunter Blobel, John D. Rockefeller Jr. Professor and head of the Laboratory of Cell Biology.

"Our most recent study reveals how proteins called transport factors, known to chaperone legitimate cargo through the nuclear pore complex, prompt the ring at the middle of the central channel to dilate."

More than a billion years ago, certain cells gained an evolutionary advantage by surrounding their DNA in a protective membrane, creating the nucleus. However, this innovation created a problem: How to move molecules, in some cases very large ones, in and out.

The nuclear pore complex was one solution, first described at Rockefeller over 50 years ago by Michael Watson, a postdoc in the Palade-Porter Laboratory. Years later, Blobel's lab identified the first of the proteins that act as the complex's building blocks: nucleoporins. For some time, it has been assumed that unstructured portions of some nucleoporin molecules guarded the complex's rigid central channel by creating a sort of gel-like barrier.

But ongoing work in Blobel's lab indicates the central channel is anything but rigid. In previous research, a team from his lab identified a flexible ring in the middle of the central channel, the diameter of which was determined by two of the nuclear pore complex's approximately 30 nucleoporins, Nup58 and Nup54, which associate and disassociate from one another in what the researchers dubbed the ring cycle.

When these two nucleoporins associate, the ring dilates to a diameter of up to 50 nanometers, a size capable of accommodating a ribosomal subunit, the largest and most complex of the cell's molecular freight. Then, when the nucleoporins separate, the single ring divides into three rings with diameters of 20 nanometers.

This most recent research, conducted by postdoc Junseock Koh in Blobel's laboratory, examines how a transport factor known as karyopherin initiates the dilation of the ring. To accomplish this, Koh measured changes in heat during reactions between the three components, karyopherin, Nup58, and Nup54.

Biophysical data like this reveals the energy dynamics during these reactions, and so provides clues to the behavior of the molecules involved. To tease apart this complex system, Koh mathematically analyzed the data collected at various conditions. His results revealed an unexpected role for a disordered region of Nup58.

"We found that when one karyopherin molecule binds to at least two disordered regions of Nup58, it stabilizes Nup58 in such a way that the dilated conformation -- in which the neighboring ordered region of Nup58 links up with Nup54 -- becomes more favorable. As a result, the more karyopherin molecules are present, the more the ring dilates," Koh says. "Based on these results, we were able to develop a framework for predicting the extent to which a ring will dilate given the amount of transport factors present."

"While this discovery is a critical step in understanding how the nuclear pore complex opens and closes, its implications go beyond basic cell biology", says Blobel, who is also Investigator of the Howard Hughes Medical Institute. "It is likely that even subtle problems in nuclear pore complex function may over time lead to numerous diseases."

Wynne Parry | EurekAlert!

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

How Obesity Promotes Breast Cancer

20.10.2017 | Life Sciences

How the smallest bacterial pathogens outwit host immune defences by stealth mechanisms

20.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>