Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research reveals why chili peppers are hot

14.08.2008
Despite the popularity of spicy cuisine among Homo sapiens, the hotness in chili peppers has always been something of an evolutionary mystery.

A plant creates fruit in order to entice animals to eat and disperse its seeds, so it doesn't make sense for that fruit to be painfully hot, said University of Florida zoology professor and evolutionary ecologist Douglas Levey.

But according to new research by Levey and six colleagues from other universities, chilies have a very good reason to make themselves hot. It boils down to protection.

Based on research on wild chili plants in rural Bolivia, the scientists found that the leading cause of seed mortality is a fungus called Fusarium. The fungus invades the fruits through wounds made by insects and destroys the seeds before they can be eaten and dispersed.

Capsaicin, the chemical that makes the peppers hot, drastically slows microbial growth and protects the fruit from Fusarium. And while capsaicin deters local mammals, such as foxes and raccoons, from consuming the chilies, birds don't have the physiological machinery to detect the spicy chemical and continue to eat the peppers and disperse seeds, Levey said.

The researchers' findings will be released today in a paper published online by the Proceedings of the National Academy of Sciences.

Levey and his colleagues were able to arrive at these conclusions because at least three of the approximately 15 species of chilies that grow in the Bolivian wild are polymorphic for pungency, which means that some individuals of those species produce pungent fruit and others produce non-pungent fruit. This provided the researchers with natural experimental conditions under which they could compare Fusarium attack on fruits with and without capsaicin.

Upon studying various chili pepper plants, the researchers observed a clear correlation between high levels of capsaicin and low seed mortality due to fungal growth, Levey said.

And the chemical doesn't just help the plants that produce it, either. Levey said the consumption of chilies can help protect humans from the dangerous diseases that are so plentiful in tropical climates.

"The use of chili peppers as a spice has spread to nearly every culture within 20 degrees of the equator, and it tends to decline as you move toward the poles," Levey said.

The capsaicin in chilies, one of the first plants domesticated in the New World, may have been used to protect human food from microbial attack long before refrigeration or artificial preservatives were available, he said.

One question Levey and his colleagues are still pondering is why any nonhot chilies remain if capsaicin is so beneficial. Their hypothesis is that the production of the chemical comes at a steep price for chili plants.

Levey said the plants that produced hot chilies had seeds with very thin coats – a presumed consequence of sacrificing the production of lignin, a complex molecule that makes up the protective seed coat, in favor of the production of capsaicin.

This phenomenon represents an interesting tradeoff between chemical and physical seed protection and demonstrates the power of natural selection, Levey said.

At higher elevations, where moisture is high and Fusarium fungus is rampant, the scientists found that 100 percent of the plants produced hot chilies. In the drier lowlands, where fungus is less of a problem, only 40 percent of the plants produced fiery fruits. The remainder spent more resources developing thick seed coats, which protect against the devastating ant populations common to lower areas.

While all of the plants look identical, telling the difference between hot and non-hot chilies is not difficult, Levey said.

"Just pop one in your mouth," he said. "You'll find out pretty quick."

Douglas Levey | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>