Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Reveals How Cells Tell Time

The fuzzy pale mold that lines the glass tubes in Dr. Yi Liu’s lab doesn’t look much like a clock.
But this fungus has an internal, cell-based timekeeper nearly as sophisticated as a human’s, allowing UT Southwestern Medical Center physiologists to study easily the biochemistry and genetics of body clocks, or circadian rhythms.

In a new study appearing online this week in the Proceedings of the National Academy of Sciences, Dr. Liu and his co-workers have found that this mold, which uses a protein called FRQ as the main gear of its clock, marks time by a sequence of changes in the protein’s chemical structure.

Dr. Liu said the new finding might someday help researchers develop treatments for human sleep disorders and other problems associated with a faulty biological clock.

“This timekeeping protein is really the core component of the circadian clock,” said Dr. Liu, professor of physiology at UT Southwestern and senior author of the study.

Despite the evolutionary distance from mold to man, mechanisms controlling their circadian clocks are very similar. In both, circadian rhythms control many biological processes, including cell division, hormonal release, sleep/wake cycles, body temperature and brain activity.

The researchers employed a fungus called Neurospora, an organism frequently used in studies on genetics and cell processes, especially circadian rhythms. It reproduces in the dark and rests in the light.

A decade ago, Dr. Liu discovered that FRQ controlled the cellular clock in Neurospora by chemical changes of its protein structure. As the day goes on, the cell adds chemical bits called phosphates to the protein. Each new phosphate acts like a clock’s ticking, letting the cell know that more time has passed.

When the number of phosphates added to FRQ reaches a certain threshold, the cell breaks it down, ready to start the cycle again.

The researchers, however, did not know where the phosphates attached to FRQ, how many got added throughout a day, or how they affected the protein’s ability to “tell” time.

In the current study, the researchers used purified FRQ to analyze the specific sites where phosphate groups attach. In all, the researchers found 76 phosphate docking sites.

“This is an extremely high number,” Dr. Liu said. “Most proteins are controlled by only a handful of phosphate sites.”

They also studied how these phosphates are added to FRQ daily and found that two enzymes are responsible for adding most of the phosphate groups in Neurospora. They also found that the total number of phosphates oscillates robustly day by day.

In addition, the researchers created a series of mutations in many of the phosphate docking sites, creating strains of mold that had abnormally short or long daily clocks.

In upcoming studies, the researchers plan to identify which enzymes add phosphates to specific sites and exactly how changes in a particular site affect a cell’s clock.

Other UT Southwestern physiology researchers contributing to the work were co-lead authors Dr. Chi-Tai Tang, postdoctoral researcher, and Dr. Shaojie Li, former postdoctoral researcher; Dr. Joonseok Cha, postdoctoral fellow; Dr. Guocun Huang, assistant instructor; and Dr. Lily Li, former postdoctoral researcher. Researchers from the National Institute of Biological Sciences in China and the Chinese Academy of Sciences also participated.

The study was supported by the National Institutes of Health and the Welch Foundation.

Visit to learn more about UT Southwestern’s clinical services in sleep and breathing disorders.

Dr. Yi Liu --,2356,42920,00.html

Aline McKenzie | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>