Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research reveals more about how the brain processes facial expressions and emotions

16.10.2012
Brain feedback from facial mimicry used to interpret ambiguous smiles, shape relationships of power and status

Research released today helps reveal how human and primate brains process and interpret facial expressions, and the role of facial mimicry in everything from deciphering an unclear smile to establishing relationships of power and status.

The findings were presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience and the world’s largest source of emerging news about brain science and health.

Facial mimicry — a social behavior in which the observer automatically activates the same facial muscles as the person she is imitating — plays a role in learning, understanding, and rapport. Mimicry can activate muscles that control both smiles and frowns, and evoke their corresponding emotions, positive and negative. The studies reveal new roles of facial mimicry and some of its underlying brain circuitry.

Today’s new findings show that:
Special brains cells dubbed “eye cells” activate in the amygdala of a monkey looking into the eyes of another monkey, even as the monkey mimics the expressions of its counterpart (Katalin Gothard, MD, PhD, abstract 402.02, see attached summary).

Social status and self-perceptions of power affect facial mimicry, such that powerful individuals suppress their smile mimicry towards other high-status people, while powerless individuals mimic everyone’s smile (Evan Carr, BS, abstract 402.11, see attached summary).

Brain imaging studies in monkeys have revealed the specific roles of different regions of the brain in understanding facial identity and emotional expression, including one brain region previously identified for its role in vocal processing (Shih-pi Ku, PhD, abstract 263.22, see attached summary).

Subconscious facial mimicry plays a strong role in interpreting the meaning of ambiguous smiles (Sebastian Korb, PhD, abstract 402.23, see attached summary).

Another recent finding discussed shows that:


Early difficulties in interactions between parents and infants with cleft lip appear to have a neurological basis, as change in a baby’s facial structure can disrupt the way adult brains react to a child (Christine Parsons, PhD, see attached speaker’s summary).

“Today’s findings highlight the role of facial expressions in communication and social behavior,” said press conference moderator Ruben Gur, PhD, of the University of Pennsylvania, an expert on behavior and brain function. “Brain circuits that interpret the face appear ever more specialized, from primate ‘eye cells,’ to brain feedback that enables us to discern meaning through facial mimicry.” This research was supported by national funding agencies, such as the National Institutes of Health, as well as private and philanthropic organizations. Click here to view the full press release.

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>