Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research reveals how antibodies neutralize mosquito-borne virus

Researchers have learned the precise structure of the mosquito-transmitted chikungunya virus pathogen while it is bound to antibodies, showing how the infection is likely neutralized.

The findings could help researchers develop effective vaccines against the infection, which causes symptoms similar to dengue fever, followed by a prolonged disease that affects the joints and causes severe arthritis. In recent outbreaks, some cases progressed to fatal encephalitis.

The researchers studied "virus-like particles," or non-infectious forms of the virus. They also obtained near atomic-scale resolution of the virus attached to four separate antibodies.

"We knew these antibodies neutralize the real virus, so we wanted to know how they do it," said Michael Rossmann, Purdue University's Hanley Distinguished Professor of Biological Sciences.

Findings are detailed in a research paper appearing Tuesday (April 2) in the journal eLife.

The scientists used a technique called cryoelectron microscopy to uncover critical structural details about the virus-like particles bound to the antibodies. The particles are made of 180 "heterodimers," molecules made of two proteins: envelope protein 1, or E1, and envelope protein 2, or E2.
The findings show the precise structure of the virus-like particle bound to a key part of the antibodies, called the antigen binding fragment, or Fab, which attaches to the heterodimers making up the virus's outer shell. The analyses showed that the antibodies stabilize the viral surface, hindering fusion to the host cell and likely neutralizing infection.

Chikungunya is an alphavirus, a family of viruses that includes eastern equine encephalitis.

"This is the first time the structure of an alphavirus has been examined in this detail," Rossmann said.

The research is aimed at learning precisely how viruses infect humans and other hosts, knowledge that may lead to better vaccines and antiviral drugs, Rossmann said.

Chikungunya in 2005 caused an epidemic on Réunion Island. A mutation in the E1 protein has allowed the virus to replicate more efficiently, which is considered the primary reason for its recent extensive spread, infecting millions of people in Africa and Asia.
The paper was co-authored by Purdue researchers Siyang Sun and Ye Xiang, Akahata Wataru of the National Institutes of Health, Heather Holdaway of Purdue, Pankaj Pal of the Washington University School of Medicine, Xinzheng Zhang of Purdue, Michael S. Diamond of the Washington University School of Medicine, Gary J. Nabel of the NIH, and Rossmann.

The research team conducted experiments to record the structure of the virus in different orientations and obtained a three-dimensional structure with a resolution of 5.3 Ångstroms, or 5.3 ten-billionths of a meter.
The research, funded by the NIH, is ongoing and involves one graduate student and five postdoctoral students. One goal is to learn how the virus is modified when the antibodies bind to the virus and to obtain higher-resolution images.

Writer: Emil Venere, 765-494-4709,

Source: Michael Rossmann, 765-494-4911,
Note to Journalists: Journalists may obtain a copy of the research paper by contacting Emil Venere, 765-494-4709,


Structural Analyses at Pseudo Atomic Resolution of Chikungunya Virus and Antibodies Show Mechanisms of Neutralization
Siyang Sun1,4, Ye Xiang1,4, Akahata Wataru2, Heather Holdaway1,5, Pankaj Pal3, Xinzheng Zhang1, Michael S. Diamond3, Gary J. Nabel2, Michael G Rossmann1,* (1 Dept of Biological Sciences, Purdue University; 2 Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health; 3 Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine; 4 These authors contributed equally to this work)

* Corresponding author. Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN 47907-2032, USA. Tel.: +1 765-494-4911; Fax: +1 765-496-1189; E-mail:

A 5.3 Å resolution, cryo-electron microscopy (cryoEM) map of Chikungunya virus-like particles (VLPs) has been interpreted using the previously published crystal structure of the Chikungunya E1-E2 glycoprotein heterodimer. The heterodimer structure was divided into domains to obtain a good fit to the cryoEM density. Differences in the T=4 quasi equivalent heterodimer components show their adaptation to different environments. The spikes on the icosahedral 3-fold axes and those in general positions are significantly different to each other, possibly representing different phases during initial generation of fusogenic E1 trimers.

CryoEM maps of neutralizing Fab fragments complexed with VLPs have been interpreted using the crystal structures of the Fab fragments and the VLP structure. Based on these analyses the CHK-152 antibody was shown to stabilize the viral surface, hindering the exposure of the fusion-loop, likely neutralizing infection by blocking fusion. The CHK-9, m10 and m242 antibodies surround the receptor-attachment site, probably inhibiting infection by blocking cell attachment.

Emil Venere | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes
07.10.2015 | Karl-Franzens-Universität Graz

nachricht Flipping molecular attachments amps up activity of CO2 catalyst
06.10.2015 | DOE/Brookhaven National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

07.10.2015 | Life Sciences

Research on clean diesel engine technology: Reduce nitrogen oxide emissions and consumption

07.10.2015 | Machine Engineering

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

More VideoLinks >>>