Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals how antibodies neutralize mosquito-borne virus

03.04.2013
Researchers have learned the precise structure of the mosquito-transmitted chikungunya virus pathogen while it is bound to antibodies, showing how the infection is likely neutralized.

The findings could help researchers develop effective vaccines against the infection, which causes symptoms similar to dengue fever, followed by a prolonged disease that affects the joints and causes severe arthritis. In recent outbreaks, some cases progressed to fatal encephalitis.

The researchers studied "virus-like particles," or non-infectious forms of the virus. They also obtained near atomic-scale resolution of the virus attached to four separate antibodies.

"We knew these antibodies neutralize the real virus, so we wanted to know how they do it," said Michael Rossmann, Purdue University's Hanley Distinguished Professor of Biological Sciences.

Findings are detailed in a research paper appearing Tuesday (April 2) in the journal eLife.

The scientists used a technique called cryoelectron microscopy to uncover critical structural details about the virus-like particles bound to the antibodies. The particles are made of 180 "heterodimers," molecules made of two proteins: envelope protein 1, or E1, and envelope protein 2, or E2.
The findings show the precise structure of the virus-like particle bound to a key part of the antibodies, called the antigen binding fragment, or Fab, which attaches to the heterodimers making up the virus's outer shell. The analyses showed that the antibodies stabilize the viral surface, hindering fusion to the host cell and likely neutralizing infection.

Chikungunya is an alphavirus, a family of viruses that includes eastern equine encephalitis.

"This is the first time the structure of an alphavirus has been examined in this detail," Rossmann said.

The research is aimed at learning precisely how viruses infect humans and other hosts, knowledge that may lead to better vaccines and antiviral drugs, Rossmann said.

Chikungunya in 2005 caused an epidemic on Réunion Island. A mutation in the E1 protein has allowed the virus to replicate more efficiently, which is considered the primary reason for its recent extensive spread, infecting millions of people in Africa and Asia.
The paper was co-authored by Purdue researchers Siyang Sun and Ye Xiang, Akahata Wataru of the National Institutes of Health, Heather Holdaway of Purdue, Pankaj Pal of the Washington University School of Medicine, Xinzheng Zhang of Purdue, Michael S. Diamond of the Washington University School of Medicine, Gary J. Nabel of the NIH, and Rossmann.

The research team conducted experiments to record the structure of the virus in different orientations and obtained a three-dimensional structure with a resolution of 5.3 Ångstroms, or 5.3 ten-billionths of a meter.
The research, funded by the NIH, is ongoing and involves one graduate student and five postdoctoral students. One goal is to learn how the virus is modified when the antibodies bind to the virus and to obtain higher-resolution images.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Source: Michael Rossmann, 765-494-4911, mgr@indiana.bio.purdue.edu
Note to Journalists: Journalists may obtain a copy of the research paper by contacting Emil Venere, 765-494-4709, venere@purdue.edu

ABSTRACT

Structural Analyses at Pseudo Atomic Resolution of Chikungunya Virus and Antibodies Show Mechanisms of Neutralization
Siyang Sun1,4, Ye Xiang1,4, Akahata Wataru2, Heather Holdaway1,5, Pankaj Pal3, Xinzheng Zhang1, Michael S. Diamond3, Gary J. Nabel2, Michael G Rossmann1,* (1 Dept of Biological Sciences, Purdue University; 2 Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health; 3 Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine; 4 These authors contributed equally to this work)

* Corresponding author. Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN 47907-2032, USA. Tel.: +1 765-494-4911; Fax: +1 765-496-1189; E-mail: mr@purdue.edu

A 5.3 Å resolution, cryo-electron microscopy (cryoEM) map of Chikungunya virus-like particles (VLPs) has been interpreted using the previously published crystal structure of the Chikungunya E1-E2 glycoprotein heterodimer. The heterodimer structure was divided into domains to obtain a good fit to the cryoEM density. Differences in the T=4 quasi equivalent heterodimer components show their adaptation to different environments. The spikes on the icosahedral 3-fold axes and those in general positions are significantly different to each other, possibly representing different phases during initial generation of fusogenic E1 trimers.

CryoEM maps of neutralizing Fab fragments complexed with VLPs have been interpreted using the crystal structures of the Fab fragments and the VLP structure. Based on these analyses the CHK-152 antibody was shown to stabilize the viral surface, hindering the exposure of the fusion-loop, likely neutralizing infection by blocking fusion. The CHK-9, m10 and m242 antibodies surround the receptor-attachment site, probably inhibiting infection by blocking cell attachment.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>