Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Resolves a Mystery in DNA Replication Process

26.09.2011
DNA replication is a basic function of living organisms, allowing cells to divide and multiply, all while maintaining the genetic code and proper function of the original cell.

This is accomplished as the double helical (coil-shaped) DNA divides into two strands that are then duplicated. New research from UMDNJ-Robert Wood Johnson Medical School and Cornell University identifies how the ring-shaped helicase enzymes that separate the strands of double helical DNA track forward along the DNA without slipping backward.

Ring-shaped helicases are key players in replicating not only the human genome but those of pathogenic viruses (viruses with the ability to cause disease) such as the human papilloma virus (HPV) that causes cervical cancer. It is hoped that understanding how this class of helicases works will pave the way to new therapeutic treatments for human diseases.

The study, “ATP-induced helicase slippage reveals highly coordinated subunits,” was chosen for advanced online publication in Nature this week, and can be found online at: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature10409.html.

To initiate unwinding of DNA, the helicase enzymes rely on the presence of nucleotides (molecules that are basic building blocks of DNA and RNA), generally a nucleotide called adenosine triphosphate or ATP. However, when explicitly examining DNA unwinding with ATP, the research team discovered that the phage T7 helicase unwinds DNA with ATP at a fast rate but it slips repeatedly.

“To our knowledge this is the first direct observation of helicase nucleotide-specific slippage, and our detailed study of this phenomenon reveals a potential mechanism for ensuring successful unwinding and duplication of DNA,” said Smita Patel, PhD, professor of biochemistry at UMDNJ-Robert Wood Johnson Medical School, along with her collaborator Michelle Wang from Cornell University and the Howard Hughes Medical Institute.

However, the researchers found that helicase slippage was stopped when another nucleotide, deoxythymidine triphosphate, or dTTP, was added to ATP, and that mixtures of ATP and dTTP controlled the degree of slippage.

“Through further examination of the DNA unwinding reaction with mixtures of ATP and dTTP, we discovered the mechanism by which the helicase subunits coordinate their activities to ensure efficient strand separation without falling off the DNA,” said Dr. Patel.

The study explains that for a helicase to slip, all six of its subunits must simultaneously lose their grip on the DNA. The presence of dTTP increased the helicases’ ability to bind successfully to DNA, thereby reducing slippage. The team explains that each of the subunits takes a turn in assuming the leading position to pull on the DNA and to move the helicase ring forward. This work reveals that while the leading subunit is pulling on the DNA, the remaining subunits are holding on to the DNA and helping the leading subunit to move forward without falling off the DNA. Holding on to the DNA tightly requires some amount of dTTP, and explains how dTTP prevents helicase slippage. This type of cooperation between the helicase ring subunits makes the helicase effective at unwinding DNA. If the process of DNA unwinding was interrupted by slippage of the helicase, and was left uncorrected, it would stall the replication process causing harm to the normal cell growth.

The research was supported by grants from the National Institutes of Health and the National Science Foundation and Cornell’s Molecular Biophysics Training Grant.

About UMDNJ-ROBERT WOOD JOHNSON MEDICAL SCHOOL

As one of the nation’s leading comprehensive medical schools, UMDNJ-Robert Wood Johnson Medical School is dedicated to the pursuit of excellence in education, research, health care delivery, and the promotion of community health. In cooperation with Robert Wood Johnson University Hospital, the medical school’s principal affiliate, they comprise New Jersey’s premier academic medical center. In addition, Robert Wood Johnson Medical School has 34 other hospital affiliates and ambulatory care sites throughout the region.

As one of the eight schools of the University of Medicine and Dentistry of New Jersey with 2,800 full-time and volunteer faculty, Robert Wood Johnson Medical School encompasses 22 basic science and clinical departments, hosts centers and institutes including The Cancer Institute of New Jersey, the Child Health Institute of New Jersey, the Center for Advanced Biotechnology and Medicine, the Environmental and Occupational Health Sciences Institute, and the Stem Cell Institute of New Jersey. The medical school maintains educational programs at the undergraduate, graduate and postgraduate levels for more than 1,500 students on its campuses in New Brunswick, Piscataway, and Camden, and provides continuing education courses for health care professionals and community education programs. To learn more about UMDNJ-Robert Wood Johnson Medical School, log on to rwjms.umdnj.edu. Find us online at www.Facebook.com/RWJMS and www.twitter.com/UMDNJ_RWJMS.

Jennifer Forbes | Newswise Science News
Further information:
http://www.rwjms.umdnj.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>