Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research promises healthier vegetable oil – and tractor fuel to harvest it

21.05.2010
Genetic discoveries from a shrub called the burning bush, known for its brilliant red fall foliage, could fire new advances in biofuels and low-calorie food oils, according to Michigan State University scientists.

New low-cost DNA sequencing technology applied to seeds of the species Euonymus alatus – a common ornamental planting – was crucial to identifying the gene responsible for its manufacture of a novel, high-quality oil. But despite its name, the burning bush is not a suitable oil crop.

Yet inserted into the mustard weed – well-known to researchers as Arabidopsis and a cousin to commercial oilseed canola – the burning bush gene encodes an enzyme that produces a substantial yield of unusual compounds called acetyl glycerides, or acTAGs. Related vegetable oils are the basis of the world’s oilseed industry for the food and biofuels markets, but the oil produced by the burning bush enzyme claims unique and valuable characteristics.

One is its lower viscosity, or thickness.

“The high viscosity of most plant oils prevents their direct use in diesel engines, so the oil must be converted to biodiesel,” explained Timothy Durrett, an MSU plant biology research associate. “We demonstrated that acTAGs possess lower viscosity than regular plant oils. The lower viscosity acTAGs could therefore be useful as a direct-use biofuel for many diesel engines.”

Improved low-temperature characteristics noted for the oil also could make it suitable for diesel fuel, he said. And acTAGs boast lower calorie content than other vegetable oils, Durrett added, “thus they could be used as a reduced-calorie food oil substitute.”

With University Distinguished Professor of plant biology John Ohlrogge, visiting professor of plant biology Michael Pollard and other MSU researchers, Durrett published the findings in the May 18 issue of Proceedings of the National Academy of Sciences.

The burning bush is certainly not a rare species – the team gathered its samples from plantings around MSU’s campus. The researchers now are working to improve the modified mustard weed seeds’ acTAGs yield and already report purity levels of up to 80 percent.

“It should now be possible to produce acetyl glycerides in transgenic oilseed crops or single cell production systems such as algae that are the focus of much current effort in biofuels research,” said Pollard, who is keen to explore the technology’s commercial potential. “With the basic genetics defined and thus one major technical risk greatly reduced, the way is open to produce and assess this novel oil in food and nonfood applications.”

Funding for this early stage research came from the U.S. Department of Agriculture with support by the Great Lakes Bioenergy Research Center, a scientific consortium of which MSU is a major partner.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Mark Fellows | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>