Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research project to boost European fish farming

European fish farms are to be globally competitive and produce the best fish in terms of ethics and quality. That is the aim of the Lifecycle research project, which is directed from the University of Gothenburg. A total sum of SEK 130 million is being invested in the project, of which SEK 64 million comes from the EU.

Europe is the part of the world that is most dependent on fish imports. This situation is due in part to the drastic cuts in local sea fish quotas and the collapse of fish stocks, which have also been observed in Sweden.

The increased level of imports may have several consequences: low supply and high prices lead to a decrease in consumption, which in turn results in public-health problems as fish forms part of a healthy diet. The fact that we make use of fish stocks in other parts of the world also contributes to over-exploitation, as well as to multinational fisheries enterprises dislodging local fishing industries. The EU, for example, has bought substantial fishing rights along the coast of Africa. Imports also lead to long-haul transport and make quality control more difficult.

At the same time, there has not been great support for the idea of making up for reduced fishing by developing Swedish fish farming. In its latest research bill, however, the Swedish Government stresses "increased knowledge for the development of aquaculture" as a high-priority area of research. The EU has also announced research funds to improve the competitiveness of the European fish-farming industry. One consequence of this is the launch of the EU project LIFECYCLE, which is directed by Professor Thrandur Björnsson and his research team at the Department of Zoology of the University of Gothenburg.

The purpose of LIFECYCLE is to enhance knowledge of the physiology of fish so that the problems that arise in relation to the life processes of farmed fish can be tackled. Examples of such problems are disruption during larval development and growth, in metamorphosis and puberty, in immunological defence and in adaptations to the environment. Through new research, the project is intended to enhance biological knowledge of these life processes, identify answers to practical problems and improve the fish-farming process, in terms of both ethics and quality.

A total sum of SEK 130 million is being invested in the project. The EU is contributing around SEK 64 million, around ten million of which will be used at the University of Gothenburg for research on growth and development physiology, intestinal physiology, the adaptation of fish to different environments and hormonal regulation of different life processes.

"In this project we will be primarily conducting research on the four most important farmed species in Europe, Atlantic salmon, rainbow trout, sea bream and European sea bass, but also on species such as cod and halibut," says Björnsson.

Fourteen research teams from nine countries are taking part in the four-year EU project which started on 1 February 2009. In the spring, researchers involved in the project will meet in Gothenburg for detailed planning of the cooperation and large-scale trials.

For further information, please contact:
Thrandur Björnsson, Department of Zoology, University of Gothenburg
+46 (0)31-7863691
+46 (0)733-441820
+46 (0)31-122196 (home)
Krister Svahn
press communicator
Faculty of Science, University of Gothenburg
+46 (0)31-786 49 12
+46 (0)732-096 339

Krister Svahn | idw
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>