Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research project aims to improve cancer therapies using type I interferons

23.04.2013
German Cancer Aid grants EUR 180,000 in support of a new research project at the Mainz University Medical Center

The immune system plays a decisive role in the fight against tumor cells. However, when tumor cells themselves prevent activation of the immune system, the immune system fails to destroy cancer cells. The cancer drug interferon-α could probably neutralize this blockade. This cytokine is being used successfully to treat various forms of cancer.

However, some patients experience undesirable autoimmune reactions on administration of the drug. The German Cancer Aid (Deutsche Krebshilfe e.V.) is donating EUR 180,000 to fund a research project at the University Medical Center of Johannes Gutenberg University Mainz that is to identify mechanisms underlying the effects of the cancer drug interferon-α (IFN-α) when it comes to fighting cancer cells by means of the blockade of so-called immunological tolerance processes. In addition, the researchers want to discover novel approaches to increase the efficacy of type I interferons in the treatment of cancer.

Interferon-α can trigger autoimmune reactions in patients, i.e., pathological reactions of the immune system. Interferon-α has been seen to date as an active substance that boosts the immune system and fights tumor cells directly. It is used, for example, in the therapy of malignant melanomas, certain forms of leukemia and cutaneous T-cell lymphomas. "The immune system is usually able to effectively destroy cancer cells. At the same time, however, there are also so-called tumor-associated tolerance processes that protect the tumor cells from being destroyed by the immune system.

Autoimmune reactions, which are known side effects of therapies with IFN-α, may indicate that this anti-tumor treatment blocks tolerance mechanisms and thus improves the immune system's natural ability for tumor rejection," explained Professor Dr. Kerstin Steinbrink, senior physician at the Department of Dermatology of the Mainz University Medical Center, which is supervising the research project "Analysis of the Effect of Type I Interferons on Immunological Tolerance Processes" funded by the German Cancer Aid. The purpose of this project is to analyze the effects of IFN-α and other type I interferons on various immune cells that exhibit tolerogenic potential in vitro and also in melanoma patients.

The knowledge gained through this project should contribute to the development of improved therapy strategies for overcoming tolerance mechanisms associated with tumors. An additional objective is to enhance the efficacy of therapy with type I interferons. Steinbrink's research team is looking to reduce potential side effects as much as possible.

"This research project is taking a patient-oriented approach. The research team led by Professor Dr. Kerstin Steinbrink will profit from its expertise in the area of immunological tolerance that it has gained over several years," said Professor Dr. Ulrich Förstermann, Chief Scientific Officer of the Mainz University Medical Center.

Weitere Informationen:

http://www.uni-mainz.de/presse/16329_ENG_HTML.php - press release ;
http://www.unimedizin-mainz.de - Mainz University Medical Center

Petra Giegerich | idw
Further information:
http://www.unimedizin-mainz.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>