Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research project aims to improve cancer therapies using type I interferons

23.04.2013
German Cancer Aid grants EUR 180,000 in support of a new research project at the Mainz University Medical Center

The immune system plays a decisive role in the fight against tumor cells. However, when tumor cells themselves prevent activation of the immune system, the immune system fails to destroy cancer cells. The cancer drug interferon-α could probably neutralize this blockade. This cytokine is being used successfully to treat various forms of cancer.

However, some patients experience undesirable autoimmune reactions on administration of the drug. The German Cancer Aid (Deutsche Krebshilfe e.V.) is donating EUR 180,000 to fund a research project at the University Medical Center of Johannes Gutenberg University Mainz that is to identify mechanisms underlying the effects of the cancer drug interferon-α (IFN-α) when it comes to fighting cancer cells by means of the blockade of so-called immunological tolerance processes. In addition, the researchers want to discover novel approaches to increase the efficacy of type I interferons in the treatment of cancer.

Interferon-α can trigger autoimmune reactions in patients, i.e., pathological reactions of the immune system. Interferon-α has been seen to date as an active substance that boosts the immune system and fights tumor cells directly. It is used, for example, in the therapy of malignant melanomas, certain forms of leukemia and cutaneous T-cell lymphomas. "The immune system is usually able to effectively destroy cancer cells. At the same time, however, there are also so-called tumor-associated tolerance processes that protect the tumor cells from being destroyed by the immune system.

Autoimmune reactions, which are known side effects of therapies with IFN-α, may indicate that this anti-tumor treatment blocks tolerance mechanisms and thus improves the immune system's natural ability for tumor rejection," explained Professor Dr. Kerstin Steinbrink, senior physician at the Department of Dermatology of the Mainz University Medical Center, which is supervising the research project "Analysis of the Effect of Type I Interferons on Immunological Tolerance Processes" funded by the German Cancer Aid. The purpose of this project is to analyze the effects of IFN-α and other type I interferons on various immune cells that exhibit tolerogenic potential in vitro and also in melanoma patients.

The knowledge gained through this project should contribute to the development of improved therapy strategies for overcoming tolerance mechanisms associated with tumors. An additional objective is to enhance the efficacy of therapy with type I interferons. Steinbrink's research team is looking to reduce potential side effects as much as possible.

"This research project is taking a patient-oriented approach. The research team led by Professor Dr. Kerstin Steinbrink will profit from its expertise in the area of immunological tolerance that it has gained over several years," said Professor Dr. Ulrich Förstermann, Chief Scientific Officer of the Mainz University Medical Center.

Weitere Informationen:

http://www.uni-mainz.de/presse/16329_ENG_HTML.php - press release ;
http://www.unimedizin-mainz.de - Mainz University Medical Center

Petra Giegerich | idw
Further information:
http://www.unimedizin-mainz.de

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>