Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research points to new target for stopping colon cancer

19.08.2009
New research led by scientists at the University of North Carolina at Chapel Hill School of Medicine have found a drug target that suggests a potent way to kill colon cancers that resist current drugs aimed at blocking a molecule found on the surface of cells.

Drugs that target the epidermal growth factor receptor, or EGFR, have been used for a number of cancers. But these drugs called EGFR inhibitors, such as cetuximab, have not been very effective against colon cancer.

The new study, however, shows that drugs that target the closely related receptor ERBB3 would probably be much more effective than EGFR inhibitors at treating most colorectal cancers, said David Threadgill, Ph.D., adjunct professor in the department of genetics at UNC and lead author of the study. He also is a member of the UNC Lineberger Comprehensive Cancer Center and a professor in the genetics department at North Carolina State University.

The study is published online August 17 in the Journal of Clinical Investigation.

The researchers genetically blocked ERBB3 in a mouse model of colon cancer and in human colon cancer cell lines. “If you genetically remove ERBB3, as you would if you were pharmacologically targeting it, then the mice rarely develop colon cancer,” Threadgill said.

In the human colon cancer cell lines that are resistant to EGFR inhibitors, cell death increased dramatically when ERBB3 was genetically removed. “So ERBB3 is essential for preventing colon cancer cells from dying,” Threadgill said. Now Threadgill is testing a pharmacologic inhibitor to get the same anti-ERBB3 effect they achieved with genetics. “If we can use an inhibitor to block ERBB3, then it should be a very potent anti-cancer therapeutic,” he said.

More broadly, the study suggests a new path for developing anti-cancer drugs.

Many cancer therapeutics, such as EGFR inhibitors, target proteins that are kinases—enzymes that initiate a cascade of signals that tell cells to reproduce. But ERBB3 is a pseudo-kinase; it functions only by binding with other proteins that have kinase activity.

“This study shows that targets that historically hadn’t been considered because they don’t have the typical activities of a kinase can be equally if not more important in supporting cancer cells,” Threadgill said.

Other UNC co-authors are Ming Yu, a former graduate student in the department of genetics and the Program in Oral Biology; Christina Pannicia, former undergraduate student in biology; and Daekee Lee, formerly of the genetics department and now of Ewha Womans University in Seoul, Republic of Korea. Other co-authors are Eunjung Lee, Hyunok Kim and Kyoungmi Kim of Ewha Womans University; and Jonathan M. Kurie and Yanan Yang of the University of Texas M.D. Anderson Cancer Center.

The study was funded by the National Cancer Institute, the National Science Foundation, and the Korea Science and Engineering Foundation.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>