Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research points to new target for stopping colon cancer

19.08.2009
New research led by scientists at the University of North Carolina at Chapel Hill School of Medicine have found a drug target that suggests a potent way to kill colon cancers that resist current drugs aimed at blocking a molecule found on the surface of cells.

Drugs that target the epidermal growth factor receptor, or EGFR, have been used for a number of cancers. But these drugs called EGFR inhibitors, such as cetuximab, have not been very effective against colon cancer.

The new study, however, shows that drugs that target the closely related receptor ERBB3 would probably be much more effective than EGFR inhibitors at treating most colorectal cancers, said David Threadgill, Ph.D., adjunct professor in the department of genetics at UNC and lead author of the study. He also is a member of the UNC Lineberger Comprehensive Cancer Center and a professor in the genetics department at North Carolina State University.

The study is published online August 17 in the Journal of Clinical Investigation.

The researchers genetically blocked ERBB3 in a mouse model of colon cancer and in human colon cancer cell lines. “If you genetically remove ERBB3, as you would if you were pharmacologically targeting it, then the mice rarely develop colon cancer,” Threadgill said.

In the human colon cancer cell lines that are resistant to EGFR inhibitors, cell death increased dramatically when ERBB3 was genetically removed. “So ERBB3 is essential for preventing colon cancer cells from dying,” Threadgill said. Now Threadgill is testing a pharmacologic inhibitor to get the same anti-ERBB3 effect they achieved with genetics. “If we can use an inhibitor to block ERBB3, then it should be a very potent anti-cancer therapeutic,” he said.

More broadly, the study suggests a new path for developing anti-cancer drugs.

Many cancer therapeutics, such as EGFR inhibitors, target proteins that are kinases—enzymes that initiate a cascade of signals that tell cells to reproduce. But ERBB3 is a pseudo-kinase; it functions only by binding with other proteins that have kinase activity.

“This study shows that targets that historically hadn’t been considered because they don’t have the typical activities of a kinase can be equally if not more important in supporting cancer cells,” Threadgill said.

Other UNC co-authors are Ming Yu, a former graduate student in the department of genetics and the Program in Oral Biology; Christina Pannicia, former undergraduate student in biology; and Daekee Lee, formerly of the genetics department and now of Ewha Womans University in Seoul, Republic of Korea. Other co-authors are Eunjung Lee, Hyunok Kim and Kyoungmi Kim of Ewha Womans University; and Jonathan M. Kurie and Yanan Yang of the University of Texas M.D. Anderson Cancer Center.

The study was funded by the National Cancer Institute, the National Science Foundation, and the Korea Science and Engineering Foundation.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>