Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research points to new target for stopping colon cancer

19.08.2009
New research led by scientists at the University of North Carolina at Chapel Hill School of Medicine have found a drug target that suggests a potent way to kill colon cancers that resist current drugs aimed at blocking a molecule found on the surface of cells.

Drugs that target the epidermal growth factor receptor, or EGFR, have been used for a number of cancers. But these drugs called EGFR inhibitors, such as cetuximab, have not been very effective against colon cancer.

The new study, however, shows that drugs that target the closely related receptor ERBB3 would probably be much more effective than EGFR inhibitors at treating most colorectal cancers, said David Threadgill, Ph.D., adjunct professor in the department of genetics at UNC and lead author of the study. He also is a member of the UNC Lineberger Comprehensive Cancer Center and a professor in the genetics department at North Carolina State University.

The study is published online August 17 in the Journal of Clinical Investigation.

The researchers genetically blocked ERBB3 in a mouse model of colon cancer and in human colon cancer cell lines. “If you genetically remove ERBB3, as you would if you were pharmacologically targeting it, then the mice rarely develop colon cancer,” Threadgill said.

In the human colon cancer cell lines that are resistant to EGFR inhibitors, cell death increased dramatically when ERBB3 was genetically removed. “So ERBB3 is essential for preventing colon cancer cells from dying,” Threadgill said. Now Threadgill is testing a pharmacologic inhibitor to get the same anti-ERBB3 effect they achieved with genetics. “If we can use an inhibitor to block ERBB3, then it should be a very potent anti-cancer therapeutic,” he said.

More broadly, the study suggests a new path for developing anti-cancer drugs.

Many cancer therapeutics, such as EGFR inhibitors, target proteins that are kinases—enzymes that initiate a cascade of signals that tell cells to reproduce. But ERBB3 is a pseudo-kinase; it functions only by binding with other proteins that have kinase activity.

“This study shows that targets that historically hadn’t been considered because they don’t have the typical activities of a kinase can be equally if not more important in supporting cancer cells,” Threadgill said.

Other UNC co-authors are Ming Yu, a former graduate student in the department of genetics and the Program in Oral Biology; Christina Pannicia, former undergraduate student in biology; and Daekee Lee, formerly of the genetics department and now of Ewha Womans University in Seoul, Republic of Korea. Other co-authors are Eunjung Lee, Hyunok Kim and Kyoungmi Kim of Ewha Womans University; and Jonathan M. Kurie and Yanan Yang of the University of Texas M.D. Anderson Cancer Center.

The study was funded by the National Cancer Institute, the National Science Foundation, and the Korea Science and Engineering Foundation.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>