Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research points to way to improve heart treatment

11.03.2010
Current drugs used to treat heart failure and arrhythmias (irregular heartbeat) have limited effectiveness and have side effects. New basic science findings from a University of Iowa study suggest a way that treatments could potentially be refined so that they work better and target only key heart-related mechanisms.

The team, which included researchers from Vanderbilt University, showed in theory that it might be possible to use drugs that maintain the positive effects on heart function of a known enzyme called calmodulin kinase II (CaM kinase) while reducing its negative effects. The findings were published the week of March 1 in the Early Online Edition of the Proceedings of the National Academy of Sciences.

anderson"CaM kinase helps regulate calcium, which is essential to heart function, but CaM kinase's calcium connection also can play a role in electrical problems that lead to irregular heart beats and cell death. This new finding suggests a specific way to keep the wanted CaM kinase effects but at the same time eliminate the bad effects," said Mark E. Anderson, M.D., Ph.D., professor and head of internal medicine at the University of Iowa Roy J. and Lucille A. Carver College of Medicine.

Anderson said that heart failure is among the most common discharge diagnoses for patients leaving hospital. "Most patients with heart failure are at risk of sudden death. Figuring out how and why heart failure happens is a major goal for academic medicine," Anderson said.

CaM kinase adds phosphate groups to other proteins -- a process known as phosphorylation. This process can activate proteins and set in motion or sustain cell activity.

"The study showed, surprisingly, the importance of CaM kinase's effect on two particular amino acid targets among the thousands of amino acids that make up protein targets for phosphorylation by CaM kinase. Controlling these targets might prevent the 'ripple effect' of other molecular events that result in arrhythmia and cell death," said Anderson, who also is a member of the University of Iowa Heart and Vascular Center and holds the Francois Abboud Chair in Internal Medicine.

Using rabbit heart cells, which behave much like human heart cells, the team showed that if CaM kinase is prevented from interacting with a protein that regulates calcium channels, negative effects, including cell death, do not occur. Specifically, they showed it was possible to either block the specific site on the protein where CaM kinase binds or block the ability of CaM kinase to perform phosphorylation on the protein.

In both cases, blocking the action of CaM kinase prevented too much calcium activity, which can be harmful.

"CaM kinase is needed to maintain calcium channel function, which allows the heart to contract. But too much CaM kinase, and consequently too much calcium entry into heart cells, causes electrical instability and other downstream molecular problems that can lead to cell overload and cell death, which causes heart failure," Anderson said.

Anderson said a next step is to try to develop drugs to prevent the unwanted CaM kinase effects.

The study's primary author was Olha Koval, Ph.D., UI postdoctoral research scholar in internal medicine. Other major UI contributors included Thomas Hund, Ph.D., associate in cardiology, and Peter Mohler, Ph.D., associate professor of internal medicine.

Anderson is a named inventor on a patent owned by Stanford University claiming to treat arrhythmias by CaM kinase inhibition.

NOTE TO EDITORS: "Fondation" in the name "Fondation Leducq" is spelled without a "u."

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

nachricht German scientists question study about plastic-eating caterpillars
15.09.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>