Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research points to way to improve heart treatment

11.03.2010
Current drugs used to treat heart failure and arrhythmias (irregular heartbeat) have limited effectiveness and have side effects. New basic science findings from a University of Iowa study suggest a way that treatments could potentially be refined so that they work better and target only key heart-related mechanisms.

The team, which included researchers from Vanderbilt University, showed in theory that it might be possible to use drugs that maintain the positive effects on heart function of a known enzyme called calmodulin kinase II (CaM kinase) while reducing its negative effects. The findings were published the week of March 1 in the Early Online Edition of the Proceedings of the National Academy of Sciences.

anderson"CaM kinase helps regulate calcium, which is essential to heart function, but CaM kinase's calcium connection also can play a role in electrical problems that lead to irregular heart beats and cell death. This new finding suggests a specific way to keep the wanted CaM kinase effects but at the same time eliminate the bad effects," said Mark E. Anderson, M.D., Ph.D., professor and head of internal medicine at the University of Iowa Roy J. and Lucille A. Carver College of Medicine.

Anderson said that heart failure is among the most common discharge diagnoses for patients leaving hospital. "Most patients with heart failure are at risk of sudden death. Figuring out how and why heart failure happens is a major goal for academic medicine," Anderson said.

CaM kinase adds phosphate groups to other proteins -- a process known as phosphorylation. This process can activate proteins and set in motion or sustain cell activity.

"The study showed, surprisingly, the importance of CaM kinase's effect on two particular amino acid targets among the thousands of amino acids that make up protein targets for phosphorylation by CaM kinase. Controlling these targets might prevent the 'ripple effect' of other molecular events that result in arrhythmia and cell death," said Anderson, who also is a member of the University of Iowa Heart and Vascular Center and holds the Francois Abboud Chair in Internal Medicine.

Using rabbit heart cells, which behave much like human heart cells, the team showed that if CaM kinase is prevented from interacting with a protein that regulates calcium channels, negative effects, including cell death, do not occur. Specifically, they showed it was possible to either block the specific site on the protein where CaM kinase binds or block the ability of CaM kinase to perform phosphorylation on the protein.

In both cases, blocking the action of CaM kinase prevented too much calcium activity, which can be harmful.

"CaM kinase is needed to maintain calcium channel function, which allows the heart to contract. But too much CaM kinase, and consequently too much calcium entry into heart cells, causes electrical instability and other downstream molecular problems that can lead to cell overload and cell death, which causes heart failure," Anderson said.

Anderson said a next step is to try to develop drugs to prevent the unwanted CaM kinase effects.

The study's primary author was Olha Koval, Ph.D., UI postdoctoral research scholar in internal medicine. Other major UI contributors included Thomas Hund, Ph.D., associate in cardiology, and Peter Mohler, Ph.D., associate professor of internal medicine.

Anderson is a named inventor on a patent owned by Stanford University claiming to treat arrhythmias by CaM kinase inhibition.

NOTE TO EDITORS: "Fondation" in the name "Fondation Leducq" is spelled without a "u."

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

The world's tiniest first responders

21.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>