Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research paves way for new generation of fungicides

06.10.2014

Plants that come under attack from pathogens have an automatic immune response. Fungi get around this plant immunity by injecting proteins into the host plant cells. These 'effector proteins' enable the fungi to escape the plant's immune system and allow the fungal cells to enter the plant unrecognised.

Exeter scientists have now shown that signalling organelles, known as 'early endosomes' act as long distance messengers in the fungi. They travel rapidly along long tube-like cells between the plant-invading fungal cell tip and the fungal cell nucleus.


Effector proteins enable the fungi to escape the plant's immune system and allow the fungal cells to enter the plant unrecognized.

Credit: University of Exeter

This rapid communication between the point of invasion and the fungal cell nucleus enables the fungus to produce the effector proteins that help evade the plant's immune response from the moment the fungus enters the host tissue.

This signalling mechanism occurs very early in the fungal infection process, at a time when the fungi are most accessible to fungicide treatment. Disabling the process could result in a new generation of fungicides that are able to act before the fungus has damaged the plant.

Professor Gero Steinberg from the University of Exeter said: "Pathogenic fungi are a major threat to our food security – they can devastate crops and cost billions of pounds worth of damage. In fact, losses of wheat, rice, and maize to fungal pathogens, per year, are the same as the annual spend by US Department of Homeland Security – some 60 billion US dollars.

As fast growing microbes, fungi adapt rapidly to anti-fungal treatments and so we need to develop new fungicides all the time. Our research has led to a better understanding of the mechanisms by which the intruder attacks and overcomes the plant defence. In order to efficiently protect crops, we must better understand molecular mechanisms like these that occur in the very earliest stages of infection."

Speaking about the research, Deputy Vice Chancellor, Professor Nick Talbot said "The University of Exeter is committed to tackling fundamental research questions to help control plant diseases, which threaten our food supply. We have built a very strong team of researchers studying fungal biology and plant pathology. This exciting discovery by Prof Steinberg's group provides a new potential route to disease control."

###

The research was supported by the Biotechnology and Biological Sciences Research Council.

The paper, 'Long-distance endosome trafficking drives fungal effector production during plant infection', is published in the journal Nature Communications.

Jo Bowler | Eurek Alert!
Further information:
http://www.exeter.ac.uk

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>