Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research into molluscan phylogeny reveals deep animal relationship of snails and mussels

21.09.2011
Snails, mussels, squids – as different as they may look, they do have something in common: they all belong to the phylum Mollusca, also called molluscs.

An international team of researchers headed by Kevin Kocot and Professor Ken Halanych, USA, with the participation of Johannes Gutenberg University Mainz (JGU), Germany, has carried out research into the relationships among different molluscs as part of a wide-ranging molecular phylogenetic study.


Arctica islandica (Bivalvia) is the largest mussel in Northern Europe (about 12 centimeters) and probably one the oldest with more than 500 million years of existence
photo: Christiane Todt, University of Bergen/Norway


Melanoides tuberculata (Cerithioidea), a species of freshwater snail with an elongate, conical scale of about 1-2 centimeters in length
photo: Christof Kühne, JGU Institute of Zoology

Snails, mussels, squids – as different as they may look, they do have something in common: they all belong to the phylum Mollusca, also called molluscs. An international team of researchers headed by Kevin Kocot and Professor Ken Halanych, USA, with the participation of Johannes Gutenberg University Mainz (JGU), Germany, has carried out research into the relationships among different molluscs as part of a wide-ranging molecular phylogenetic study. This phylum includes more than 100,000 extant species which are divided into eight major lineages. Up to now, it has been disputed how these groups are related to each other and how they evolved. Through their collaboration, the scientists have now assembled a comprehensive data set and analyzed it in order to reveal the phylogeny of Mollusca. Surprisingly, they found a close relationship between snails and mussels.

Within the Metazoa, molluscs are the second species-rich group behind arthropods. As a food source and a provider of pearls and shells, it is in particular mussels, snails, and squids which are of tremendous economic importance while, on the other hand, they can also cause considerable damage both in ecological and economic terms. In the field of neuroscience, many species serve as models for studying the function of nerve cells and the brain in general. And yet the development of molluscs is something of a mystery and has been the subject of intense debate for almost 200 years.

Under the direction of Auburn University, Alabama, USA, the international group of scientists from the University of Bergen, the University of Florida, and Johannes Gutenberg University Mainz compiled a data set that includes 84,000 amino acid positions on 308 genes of 49 mollusc species. "It is the first time ever that such a large molecular data set has been created for the purpose of explaining from scratch the phylogeny of molluscs, after so many years of different hypotheses being put forward on the relationships between the different species," explains Professor Dr. Bernhard Lieb from the JGU Institute of Zoology. Together with Dr. Achim Meyer, currently a postdoctoral student at the Mainz Institute of Zoology, and Dr. Christiane Todt from Bergen, Lieb has supplied essential data on Solenogastres and Caudofoveata, i.e. the small basal worm-like molluscs, on Scaphopoda (or tusk shells) as well as on two species of snails and two species of bivalves from which genetic analyses were not previously available.

The studies confirm an old hypothesis which theorized that molluscs are divided into two subphyla: the shell-bearing Conchifera and the spiny Aculifera. Although they lack a shell, squids belong to the shell-bearing Conchifera as do mussels and snails. On this subject, Professor Dr. Bernhard Lieb remarks that Nautilus (pearl boat), a 450 million year-old representative of the cephalopods, still bears a shell while in other representatives of this class the shell is either very much reduced in size or has been internalized. One unexpected result the researchers found was that snails (Gastropoda) and mussels (Bivalvia) are sister taxa. This is in contrast to the earlier assumption that snails and squids – the groups with the most highly developed heads and "brains" – are most closely related. This grouping of snails and mussels received little attention up to now, even though they make up over 95% of all mollusc species. Therefore, "we propose the node-based name PLEISTOMOLLUSCA, which includes the last common ancestor of Gastropoda and Bivalvia and all descendents," write the scientists in their publication featured in the scientific journal Nature.

The results are particularly interesting and of further scientific benefit because certain squids and the marine snail Aplysia californica are used as laboratory models for research into learning and memory. In addition, the results should help classify important fossil finds as molluscs are among the most frequent and best preserved fossils. With these new discoveries, our understanding of the early development of this phylum can be advanced.

Publication:
K. M. Kocot et al., Phylogenomics reveals deep molluscan relationships, Nature, 4 September 2011, doi:10.1038/nature10382

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14623.php

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>