Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research into molluscan phylogeny reveals deep animal relationship of snails and mussels

21.09.2011
Snails, mussels, squids – as different as they may look, they do have something in common: they all belong to the phylum Mollusca, also called molluscs.

An international team of researchers headed by Kevin Kocot and Professor Ken Halanych, USA, with the participation of Johannes Gutenberg University Mainz (JGU), Germany, has carried out research into the relationships among different molluscs as part of a wide-ranging molecular phylogenetic study.


Arctica islandica (Bivalvia) is the largest mussel in Northern Europe (about 12 centimeters) and probably one the oldest with more than 500 million years of existence
photo: Christiane Todt, University of Bergen/Norway


Melanoides tuberculata (Cerithioidea), a species of freshwater snail with an elongate, conical scale of about 1-2 centimeters in length
photo: Christof Kühne, JGU Institute of Zoology

Snails, mussels, squids – as different as they may look, they do have something in common: they all belong to the phylum Mollusca, also called molluscs. An international team of researchers headed by Kevin Kocot and Professor Ken Halanych, USA, with the participation of Johannes Gutenberg University Mainz (JGU), Germany, has carried out research into the relationships among different molluscs as part of a wide-ranging molecular phylogenetic study. This phylum includes more than 100,000 extant species which are divided into eight major lineages. Up to now, it has been disputed how these groups are related to each other and how they evolved. Through their collaboration, the scientists have now assembled a comprehensive data set and analyzed it in order to reveal the phylogeny of Mollusca. Surprisingly, they found a close relationship between snails and mussels.

Within the Metazoa, molluscs are the second species-rich group behind arthropods. As a food source and a provider of pearls and shells, it is in particular mussels, snails, and squids which are of tremendous economic importance while, on the other hand, they can also cause considerable damage both in ecological and economic terms. In the field of neuroscience, many species serve as models for studying the function of nerve cells and the brain in general. And yet the development of molluscs is something of a mystery and has been the subject of intense debate for almost 200 years.

Under the direction of Auburn University, Alabama, USA, the international group of scientists from the University of Bergen, the University of Florida, and Johannes Gutenberg University Mainz compiled a data set that includes 84,000 amino acid positions on 308 genes of 49 mollusc species. "It is the first time ever that such a large molecular data set has been created for the purpose of explaining from scratch the phylogeny of molluscs, after so many years of different hypotheses being put forward on the relationships between the different species," explains Professor Dr. Bernhard Lieb from the JGU Institute of Zoology. Together with Dr. Achim Meyer, currently a postdoctoral student at the Mainz Institute of Zoology, and Dr. Christiane Todt from Bergen, Lieb has supplied essential data on Solenogastres and Caudofoveata, i.e. the small basal worm-like molluscs, on Scaphopoda (or tusk shells) as well as on two species of snails and two species of bivalves from which genetic analyses were not previously available.

The studies confirm an old hypothesis which theorized that molluscs are divided into two subphyla: the shell-bearing Conchifera and the spiny Aculifera. Although they lack a shell, squids belong to the shell-bearing Conchifera as do mussels and snails. On this subject, Professor Dr. Bernhard Lieb remarks that Nautilus (pearl boat), a 450 million year-old representative of the cephalopods, still bears a shell while in other representatives of this class the shell is either very much reduced in size or has been internalized. One unexpected result the researchers found was that snails (Gastropoda) and mussels (Bivalvia) are sister taxa. This is in contrast to the earlier assumption that snails and squids – the groups with the most highly developed heads and "brains" – are most closely related. This grouping of snails and mussels received little attention up to now, even though they make up over 95% of all mollusc species. Therefore, "we propose the node-based name PLEISTOMOLLUSCA, which includes the last common ancestor of Gastropoda and Bivalvia and all descendents," write the scientists in their publication featured in the scientific journal Nature.

The results are particularly interesting and of further scientific benefit because certain squids and the marine snail Aplysia californica are used as laboratory models for research into learning and memory. In addition, the results should help classify important fossil finds as molluscs are among the most frequent and best preserved fossils. With these new discoveries, our understanding of the early development of this phylum can be advanced.

Publication:
K. M. Kocot et al., Phylogenomics reveals deep molluscan relationships, Nature, 4 September 2011, doi:10.1038/nature10382

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14623.php

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>