Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research at Marshall University may lead to new ways to transport and manipulate molecules

03.02.2010
A group of Marshall University researchers and their colleagues in Japan are conducting research that may lead to new ways to move or position single molecules—a necessary step if man someday hopes to build molecular machines or other devices capable of working at very small scales.

Dr. Eric Blough, a member of the research team and an associate professor in Marshall University’s Department of Biological Sciences, said his group has shown how bionanomotors can be used some day to move and manipulate molecules at the nanoscale.

Their research will be published in the Feb. 5 issue of the research journal Small.

“Being able to manipulate a single molecule under controlled conditions is actually a pretty big challenge,” said Blough. “It’s not quite the same, but imagine trying to pick up a single sewing needle off the ground with a huge steam shovel, and doing it so that you pick up the needle and nothing else. Or, to put it another way—how do you manipulate something that is very tiny with something that is very big? We decided to try and get around this problem by seeing if it was possible to use single molecules to move other single molecules.”

“What we are trying to replicate in the lab is something that nature has been doing for millions of years—cells use bionanomotors all the time to move things around,” he said.

Blough describes bionanomotors as naturally occurring tiny “machines” that convert chemical energy directly into mechanical work. A nanometer is about 1/100,000 the width of a human hair. A nanomotor is similarly sized and operates at the smallest of small scales.

“Our muscles are living proof of how bionanomotors can be harnessed to do useful work,” he added.

In the lab, Blough and his colleagues used myosin—a protein found in muscle that is responsible for generating the force of muscle contraction—as the motor, and actin—another protein isolated from muscle—as the carrier.

Using a technique to make a pattern of active myosin molecules on a surface, they showed how cargo—they used small beads—could be attached to actin filaments and moved from one part of the surface to another. To improve the system, they also used actin filaments they had bundled together.

“When we first started our work, we noticed that single actin filaments moved randomly,” said Dr. Hideyo Takatsuki, lead author of the journal article and a postdoctoral fellow in Blough’s laboratory. “To be able to transport something from point A to point B effectively you need to be able to have some control over the movement. The actin filaments are so flexible that it is difficult to control their motion but we found that if we bundled a bunch of them together, the movement of the filaments was almost straight.”

In addition, the team also showed they could use light to control the movement of the filaments.

“For a transport system to work efficiently, you really need to have the ability to stop the carrier to pick up cargo, as well as the means to stop transport when you arrive at your destination,” added Takatsuki.

To control the movement, they chose to exploit the chemical properties of another molecule called blebbistatin.

“Blebbistatin is an inhibitor of myosin and can be switched on and off by light,” Blough said. “We found that we could stop and start movement by changing how the system was illuminated.”

According to Blough, the long-range goal of the team’s work is to develop a platform for the development of a wide range of nanoscale transport and sensing applications in the biomedical field.

“The promise of nanotechnology is immense,” he said. “Someday it might be possible to perform diagnostic tests using incredibly small amounts of sample that can be run in a very short period of time and with a high degree of accuracy. The implications for improving human health are incredible.”

Blough added that although their recent work is a step forward, there is still a long way to go.

“A number of further advancements are necessary before bionanomotors can be used for ‘lab-on-a-chip’ applications,” he said. “It’s a challenging problem, but that is one of the great things about science—every day is new and interesting.”

For more information, contact Blough at blough@marshall.edu or call 304-696-2708

Ginny Painter | EurekAlert!
Further information:
http://www.marshall.edu

Further reports about: actin filaments diagnostic test single molecule

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>