Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links water disinfection byproducts to adverse health effects

25.10.2011
University of Illinois scientists report the first identification of a cellular mechanism linked to the toxicity of a major class of drinking water disinfection byproducts. This study, published in Environmental Science & Technology, suggests a possible connection to adverse health effects, including neurological diseases such as Alzheimer's.

"I'm not implying that drinking disinfected water will give you Alzheimer's," said Michael Plewa, lead scientist and professor of genetics in the U of I Department of Crop Sciences. "Certainly, the disinfection of drinking water was one of the most significant public health achievements of the 20th century. But the adverse effects of disinfection byproducts (DBPs) that are unintentionally formed during this process are causing concerns as researchers unveil their toxicity."

More than 600 DBPs have been discovered. Although researchers know some DBPs are toxic, little biological information is available on the majority of these water contaminants. The Environmental Protection Agency regulates only 11 of these DBPs, he said.

Plewa's laboratory investigated the biological mechanism, or the cellular target that leads to toxicity, in the second-most prevalent DBP class generated in disinfected water – haloacetic acids (HAAs).

"The EPA has regulated HAAs for nearly 15 years. However, we did not know how they caused toxicity before this study," he said. "Now that we've uncovered the mechanism for HAAs, we can make sense of past data that can lead to new studies relating to adverse pregnancy outcomes, different types of cancer, and neurological dysfunction."

Plewa believes this will assist the EPA in establishing regulations based on science. Their research will also help the water treatment community develop new methods to prevent the generation of the most toxic DBPs.

"It's fairly simple," Plewa said. "To increase the health benefits of disinfected water, we must reduce the most toxic DBPs. If we understand their biological mechanisms, we can come up with more rational ways to disinfect drinking water without generating toxic DBPs."

In this study, researchers focused on three HAAs – iodoacetic acid, bromoacetic acid and chloroacetic acid. After they rejected their first hypothesis that the HAAs directly damaged DNA, they looked at research in a different area – neuroscience. Plewa's graduate student, Justin Pals, discovered an amazing connection, Plewa said.

In neurotoxicology, iodoacetic acid reduces the availability of nutrients or oxygen in neurons by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

"Researchers are interested in understanding how to prevent damage after a stroke or other neurological damage," Plewa said. "Iodoacetic acid kills these cells. One of the targets they found was that iodoacetic acid inhibited GAPDH."

Plewa's lab conducted quantitative GAPDH enzyme kinetics and discovered that the data were highly correlated with a diversity of adverse health markers.

"All the pieces of the puzzle fell into place in an instant," Plewa said. "We had discovered our cellular target – GAPDH. Never before had this type of research been done with this level of precision and associated with a large body of adverse biological impacts."

They discovered that the HAA disinfection byproducts were toxic because the cells cannot make ATP, and this causes oxidative stress.

"Cells treated with HAAs experience DNA damage," Plewa said. "So they start expressing DNA repair systems. HAAs are not directly damaging DNA, rather they are inhibiting GAPDH, which is involved in increasing the oxidative stress that we are observing."

A growing body of information has shown that GAPDH is associated with the onset of neurological diseases.

"If you carry a natural mutation for GAPDH and are exposed to high levels of these disinfection byproducts, you could be more susceptible to adverse health effects such as Alzheimer's," he said.

More research is needed to study iodinated disinfection byproducts because they are the most reactive in inhibiting GAPDH function and are currently not regulated by the EPA, Plewa said.

"We replaced the standard working model of direct DNA damage with a new working model based on a cellular target molecule," he said. "This discovery is a fundamental contribution to the field of drinking water science."

This research, "Biological Mechanism for the Toxicity of Haloacetic Acid Drinking Water Disinfection Byproducts," was published in Environmental Science & Technology. Scientists include Michael Plewa, Justin Pals, Justin Ang and Elizabeth Wagner, all of the University of Illinois. Research was supported by the WaterCAMPWS Center NSF Award CTS-0120978.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>