Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links water disinfection byproducts to adverse health effects

25.10.2011
University of Illinois scientists report the first identification of a cellular mechanism linked to the toxicity of a major class of drinking water disinfection byproducts. This study, published in Environmental Science & Technology, suggests a possible connection to adverse health effects, including neurological diseases such as Alzheimer's.

"I'm not implying that drinking disinfected water will give you Alzheimer's," said Michael Plewa, lead scientist and professor of genetics in the U of I Department of Crop Sciences. "Certainly, the disinfection of drinking water was one of the most significant public health achievements of the 20th century. But the adverse effects of disinfection byproducts (DBPs) that are unintentionally formed during this process are causing concerns as researchers unveil their toxicity."

More than 600 DBPs have been discovered. Although researchers know some DBPs are toxic, little biological information is available on the majority of these water contaminants. The Environmental Protection Agency regulates only 11 of these DBPs, he said.

Plewa's laboratory investigated the biological mechanism, or the cellular target that leads to toxicity, in the second-most prevalent DBP class generated in disinfected water – haloacetic acids (HAAs).

"The EPA has regulated HAAs for nearly 15 years. However, we did not know how they caused toxicity before this study," he said. "Now that we've uncovered the mechanism for HAAs, we can make sense of past data that can lead to new studies relating to adverse pregnancy outcomes, different types of cancer, and neurological dysfunction."

Plewa believes this will assist the EPA in establishing regulations based on science. Their research will also help the water treatment community develop new methods to prevent the generation of the most toxic DBPs.

"It's fairly simple," Plewa said. "To increase the health benefits of disinfected water, we must reduce the most toxic DBPs. If we understand their biological mechanisms, we can come up with more rational ways to disinfect drinking water without generating toxic DBPs."

In this study, researchers focused on three HAAs – iodoacetic acid, bromoacetic acid and chloroacetic acid. After they rejected their first hypothesis that the HAAs directly damaged DNA, they looked at research in a different area – neuroscience. Plewa's graduate student, Justin Pals, discovered an amazing connection, Plewa said.

In neurotoxicology, iodoacetic acid reduces the availability of nutrients or oxygen in neurons by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

"Researchers are interested in understanding how to prevent damage after a stroke or other neurological damage," Plewa said. "Iodoacetic acid kills these cells. One of the targets they found was that iodoacetic acid inhibited GAPDH."

Plewa's lab conducted quantitative GAPDH enzyme kinetics and discovered that the data were highly correlated with a diversity of adverse health markers.

"All the pieces of the puzzle fell into place in an instant," Plewa said. "We had discovered our cellular target – GAPDH. Never before had this type of research been done with this level of precision and associated with a large body of adverse biological impacts."

They discovered that the HAA disinfection byproducts were toxic because the cells cannot make ATP, and this causes oxidative stress.

"Cells treated with HAAs experience DNA damage," Plewa said. "So they start expressing DNA repair systems. HAAs are not directly damaging DNA, rather they are inhibiting GAPDH, which is involved in increasing the oxidative stress that we are observing."

A growing body of information has shown that GAPDH is associated with the onset of neurological diseases.

"If you carry a natural mutation for GAPDH and are exposed to high levels of these disinfection byproducts, you could be more susceptible to adverse health effects such as Alzheimer's," he said.

More research is needed to study iodinated disinfection byproducts because they are the most reactive in inhibiting GAPDH function and are currently not regulated by the EPA, Plewa said.

"We replaced the standard working model of direct DNA damage with a new working model based on a cellular target molecule," he said. "This discovery is a fundamental contribution to the field of drinking water science."

This research, "Biological Mechanism for the Toxicity of Haloacetic Acid Drinking Water Disinfection Byproducts," was published in Environmental Science & Technology. Scientists include Michael Plewa, Justin Pals, Justin Ang and Elizabeth Wagner, all of the University of Illinois. Research was supported by the WaterCAMPWS Center NSF Award CTS-0120978.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>