Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links water disinfection byproducts to adverse health effects

25.10.2011
University of Illinois scientists report the first identification of a cellular mechanism linked to the toxicity of a major class of drinking water disinfection byproducts. This study, published in Environmental Science & Technology, suggests a possible connection to adverse health effects, including neurological diseases such as Alzheimer's.

"I'm not implying that drinking disinfected water will give you Alzheimer's," said Michael Plewa, lead scientist and professor of genetics in the U of I Department of Crop Sciences. "Certainly, the disinfection of drinking water was one of the most significant public health achievements of the 20th century. But the adverse effects of disinfection byproducts (DBPs) that are unintentionally formed during this process are causing concerns as researchers unveil their toxicity."

More than 600 DBPs have been discovered. Although researchers know some DBPs are toxic, little biological information is available on the majority of these water contaminants. The Environmental Protection Agency regulates only 11 of these DBPs, he said.

Plewa's laboratory investigated the biological mechanism, or the cellular target that leads to toxicity, in the second-most prevalent DBP class generated in disinfected water – haloacetic acids (HAAs).

"The EPA has regulated HAAs for nearly 15 years. However, we did not know how they caused toxicity before this study," he said. "Now that we've uncovered the mechanism for HAAs, we can make sense of past data that can lead to new studies relating to adverse pregnancy outcomes, different types of cancer, and neurological dysfunction."

Plewa believes this will assist the EPA in establishing regulations based on science. Their research will also help the water treatment community develop new methods to prevent the generation of the most toxic DBPs.

"It's fairly simple," Plewa said. "To increase the health benefits of disinfected water, we must reduce the most toxic DBPs. If we understand their biological mechanisms, we can come up with more rational ways to disinfect drinking water without generating toxic DBPs."

In this study, researchers focused on three HAAs – iodoacetic acid, bromoacetic acid and chloroacetic acid. After they rejected their first hypothesis that the HAAs directly damaged DNA, they looked at research in a different area – neuroscience. Plewa's graduate student, Justin Pals, discovered an amazing connection, Plewa said.

In neurotoxicology, iodoacetic acid reduces the availability of nutrients or oxygen in neurons by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

"Researchers are interested in understanding how to prevent damage after a stroke or other neurological damage," Plewa said. "Iodoacetic acid kills these cells. One of the targets they found was that iodoacetic acid inhibited GAPDH."

Plewa's lab conducted quantitative GAPDH enzyme kinetics and discovered that the data were highly correlated with a diversity of adverse health markers.

"All the pieces of the puzzle fell into place in an instant," Plewa said. "We had discovered our cellular target – GAPDH. Never before had this type of research been done with this level of precision and associated with a large body of adverse biological impacts."

They discovered that the HAA disinfection byproducts were toxic because the cells cannot make ATP, and this causes oxidative stress.

"Cells treated with HAAs experience DNA damage," Plewa said. "So they start expressing DNA repair systems. HAAs are not directly damaging DNA, rather they are inhibiting GAPDH, which is involved in increasing the oxidative stress that we are observing."

A growing body of information has shown that GAPDH is associated with the onset of neurological diseases.

"If you carry a natural mutation for GAPDH and are exposed to high levels of these disinfection byproducts, you could be more susceptible to adverse health effects such as Alzheimer's," he said.

More research is needed to study iodinated disinfection byproducts because they are the most reactive in inhibiting GAPDH function and are currently not regulated by the EPA, Plewa said.

"We replaced the standard working model of direct DNA damage with a new working model based on a cellular target molecule," he said. "This discovery is a fundamental contribution to the field of drinking water science."

This research, "Biological Mechanism for the Toxicity of Haloacetic Acid Drinking Water Disinfection Byproducts," was published in Environmental Science & Technology. Scientists include Michael Plewa, Justin Pals, Justin Ang and Elizabeth Wagner, all of the University of Illinois. Research was supported by the WaterCAMPWS Center NSF Award CTS-0120978.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht What Makes Stem Cells into Perfect Allrounders
27.06.2017 | Universität Zürich

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>