Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research links common RNA modification to obesity

18.10.2011
An international research team has discovered that a pervasive human RNA modification provides the physiological underpinning of the genetic regulatory process that contributes to obesity and type II diabetes.

European researchers showed in 2007 that the FTO gene was the major gene associated with obesity and type II diabetes, but the details of its physiological and cellular functioning remained unknown.

Now, a team led by University of Chicago chemistry professor Chuan He has demonstrated experimentally the importance of a reversible RNA modification process mediated by the FTO protein upon biological regulation. He and 10 co-authors from Chicago, China and England published the details of their finding in the Oct. 16 advance online edition of Nature Chemical Biology.

He and his colleagues have shown, for the first time, the existence of the reversible RNA modification process — called methylation — and that it potentially impacts protein expression and function through its action on a common RNA base: adenosine. The process is reversible because it can involve the addition or removal of a methyl group from adenosine. The team found that the FTO protein mediates cellular removal of the methyl group.

"An improved understanding of the normal functions of FTO, as exemplified by this work, could aid the development of novel anti-obesity therapies," said Stephen O'Rahilly, professor of clinical biochemistry and director of the Metabolic Research Laboratories at the University of Cambridge. O'Rahilly, a leading researcher in obesity and metabolic disease who also has studied FTO, was not directly involved in He's project.

"Variants around the FTO gene have consistently been associated with human obesity and artificial manipulation of the fto gene in mice clearly demonstrates that FTO plays a crucial role in the regulation of body weight," O'Rahilly explained. "However, the development of a deeper understanding of the normal biological role of FTO has been challenging."

Scientists already had demonstrated that FTO removes methyl groups from nucleic acids, but only on one rare type of DNA or RNA methylation. The new research from He and his colleagues shows that FTO also acts on the common messenger RNA modification called N6-methyladenosine, O'Rahilly said.

The paper arose from He's investigations of the AlkB family of proteins that act on nucleic acids. Based on this work, He and his collaborators proved that human cells exhibit reversible methylation of RNA bases, which significantly impact critical life processes.

Important but mysterious

Every human messenger RNA carries on average three to six methylations on adenosine. Scientists knew these methylations were extremely important but their function remained a mystery, He said. "For the first time, we show that these methylations are reversible and play a key role in human energy homeostasis," the process by which the body maintains a complex biochemical dynamic equilibrium.

The modification of N6-methyladenosine in messenger RNA is pervasive throughout the mammal kingdom and many other organisms. Despite its abundance, this modification's exact functional role remains unknown, He said. But his team's discovery strongly indicates that the modification has major roles in messenger RNA metabolism.

The finding may open a new research field — RNA epigenetics — for delving into the realm of biological regulatory processes, He said. The epigenetics of DNA and histones (proteins that package DNA in human cells) have become well-explored topics on the frontiers of biological research over the last 10 to 20 years. "It is safe to say 50 percent of biologists work on subjects related to epigenetics one way or another," He said.

DNA (deoxyribonucleic acid) for decades has reigned as king over biological research on epigenetics of nucleic acids, as He noted in the December 2010 issue of Nature Chemical Biology. RNA (ribonucleic acid) modification was regarded more as a vassal that merely fine-tunes gene expression and regulation, until this recent discovery, which confirms the speculation by He and others that RNA modification has secretly wielded a far greater genetic influence than anyone had previously suspected. That's why, as He wrote last year, "reversible RNA modification might represent another realm for biological regulation in the form of 'RNA epigenetics.'"

Citations: "N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO," by Guifang Jia, Ye Fu, Xu Zhao, Qing Dai, Guanqun Zheng, Ying Yang, Chengqi Yi, Tomas Lindahl, Tao Pan, Yun-Gui Yang and Chuan He, Nature Chemical Biology, advance online publication Oct. 16, 2011.

"RNA epigenetics?" by Chuan He, Nature Chemical Biology, Dec. 2010.

Funding: National Institutes of Health, Chinese Academy of Sciences, Chicago Biomedical Consortium, Beijing Institute of Genomics.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>