Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research links common RNA modification to obesity

18.10.2011
An international research team has discovered that a pervasive human RNA modification provides the physiological underpinning of the genetic regulatory process that contributes to obesity and type II diabetes.

European researchers showed in 2007 that the FTO gene was the major gene associated with obesity and type II diabetes, but the details of its physiological and cellular functioning remained unknown.

Now, a team led by University of Chicago chemistry professor Chuan He has demonstrated experimentally the importance of a reversible RNA modification process mediated by the FTO protein upon biological regulation. He and 10 co-authors from Chicago, China and England published the details of their finding in the Oct. 16 advance online edition of Nature Chemical Biology.

He and his colleagues have shown, for the first time, the existence of the reversible RNA modification process — called methylation — and that it potentially impacts protein expression and function through its action on a common RNA base: adenosine. The process is reversible because it can involve the addition or removal of a methyl group from adenosine. The team found that the FTO protein mediates cellular removal of the methyl group.

"An improved understanding of the normal functions of FTO, as exemplified by this work, could aid the development of novel anti-obesity therapies," said Stephen O'Rahilly, professor of clinical biochemistry and director of the Metabolic Research Laboratories at the University of Cambridge. O'Rahilly, a leading researcher in obesity and metabolic disease who also has studied FTO, was not directly involved in He's project.

"Variants around the FTO gene have consistently been associated with human obesity and artificial manipulation of the fto gene in mice clearly demonstrates that FTO plays a crucial role in the regulation of body weight," O'Rahilly explained. "However, the development of a deeper understanding of the normal biological role of FTO has been challenging."

Scientists already had demonstrated that FTO removes methyl groups from nucleic acids, but only on one rare type of DNA or RNA methylation. The new research from He and his colleagues shows that FTO also acts on the common messenger RNA modification called N6-methyladenosine, O'Rahilly said.

The paper arose from He's investigations of the AlkB family of proteins that act on nucleic acids. Based on this work, He and his collaborators proved that human cells exhibit reversible methylation of RNA bases, which significantly impact critical life processes.

Important but mysterious

Every human messenger RNA carries on average three to six methylations on adenosine. Scientists knew these methylations were extremely important but their function remained a mystery, He said. "For the first time, we show that these methylations are reversible and play a key role in human energy homeostasis," the process by which the body maintains a complex biochemical dynamic equilibrium.

The modification of N6-methyladenosine in messenger RNA is pervasive throughout the mammal kingdom and many other organisms. Despite its abundance, this modification's exact functional role remains unknown, He said. But his team's discovery strongly indicates that the modification has major roles in messenger RNA metabolism.

The finding may open a new research field — RNA epigenetics — for delving into the realm of biological regulatory processes, He said. The epigenetics of DNA and histones (proteins that package DNA in human cells) have become well-explored topics on the frontiers of biological research over the last 10 to 20 years. "It is safe to say 50 percent of biologists work on subjects related to epigenetics one way or another," He said.

DNA (deoxyribonucleic acid) for decades has reigned as king over biological research on epigenetics of nucleic acids, as He noted in the December 2010 issue of Nature Chemical Biology. RNA (ribonucleic acid) modification was regarded more as a vassal that merely fine-tunes gene expression and regulation, until this recent discovery, which confirms the speculation by He and others that RNA modification has secretly wielded a far greater genetic influence than anyone had previously suspected. That's why, as He wrote last year, "reversible RNA modification might represent another realm for biological regulation in the form of 'RNA epigenetics.'"

Citations: "N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO," by Guifang Jia, Ye Fu, Xu Zhao, Qing Dai, Guanqun Zheng, Ying Yang, Chengqi Yi, Tomas Lindahl, Tao Pan, Yun-Gui Yang and Chuan He, Nature Chemical Biology, advance online publication Oct. 16, 2011.

"RNA epigenetics?" by Chuan He, Nature Chemical Biology, Dec. 2010.

Funding: National Institutes of Health, Chinese Academy of Sciences, Chicago Biomedical Consortium, Beijing Institute of Genomics.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>