Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research led by Wayne State discovers single gene in bees separating queens from workers

03.02.2014
Discovery may provide key to increasing agricultural economy in Michigan and beyond

A research team led by Wayne State University, in collaboration with Michigan State University, has identified a single gene in honeybees that separates the queens from the workers.

The scientists unraveled the gene's inner workings and published the results in the current issue of Biology Letters. The gene, which is responsible for leg and wing development, plays a crucial role in the evolution of bees' ability to carry pollen.

"The gene — Ultrabithorax, or Ubx — is responsible for making hind legs different from fore legs so they can carry pollen" said Aleksandar Popadic, associate professor of biological sciences in Wayne State University's College of Liberal Arts and Science and principal investigator of the study. "In some groups, like crickets, Ubx is responsible for creating a 'jumping' hind leg. In others, such as bees, it makes a pollen basket — a 'naked,' bristle-free leg region that creates a space for packing pollen."

"Other studies have shed some light on this gene's role in this realm, but our team examined in great detail how the modifications take place," added Zachary Huang, MSU entomologist.

Ubx represses the development of bristles on bees' hind legs, creating a smooth surface that can be used for packing pollen. This important discovery can be used as a foray into more commercial studies focused on providing means to enhance a bee's pollination ability – the bigger the pollen basket, the more pollen that can be packed in it and transported back to the hive.

While workers have these distinct features, queens do not. The team confirmed this by isolating and silencing Ubx. This made the pollen baskets completely disappear, altered the growth of the pollen comb and reduced the size of the pollen press. Interestingly, Ubx is also expressed in the same region of the hind legs in bumble bees, which are in the same family as honey bees. This finding suggests that the evolution of the pollen-gathering apparatus in all corbiculate bees may have a shared origin and could be traced to the acquisition of novel functions by Ubx.

In another interesting finding, researchers identified that bees living in more complex social structures have an advantage over isolated populations in developing these important functions.

"The pollen baskets are much less elaborate or completely absent in bees that are less socially complex," Huang said. "We conclude that the evolution of pollen baskets is a major innovation among social insects and is tied directly to more complex social behaviors."

The value of agricultural crops dependent on honey bee pollination was estimated to be $14.6 billion per year in the U.S. in 2013.

"In Michigan alone, the fruit and vegetable industries produce over $2 billion per year, and nearly 50 percent of that value is due entirely to honey bee pollination," said Huang. "This shows that bees are contributing significantly to the state and national economy."

This study, along with future research by Popadic and Huang, may provide an option for improving the shrinking population of bees' pollen-collecting capacity, leading to increased pollination and hopeful increases in fruit and vegetable production.

This research was funded to Popadic by the National Institute of General Medical Sciences of the National Institutes of Health, number GM071927.

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world.

Julie O'Connor | EurekAlert!
Further information:
http://www.research.wayne.edu
http://www.wayne.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

This 2-D nanosheet expands like a Grow Monster

19.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>