Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research led by Wayne State discovers single gene in bees separating queens from workers

03.02.2014
Discovery may provide key to increasing agricultural economy in Michigan and beyond

A research team led by Wayne State University, in collaboration with Michigan State University, has identified a single gene in honeybees that separates the queens from the workers.

The scientists unraveled the gene's inner workings and published the results in the current issue of Biology Letters. The gene, which is responsible for leg and wing development, plays a crucial role in the evolution of bees' ability to carry pollen.

"The gene — Ultrabithorax, or Ubx — is responsible for making hind legs different from fore legs so they can carry pollen" said Aleksandar Popadic, associate professor of biological sciences in Wayne State University's College of Liberal Arts and Science and principal investigator of the study. "In some groups, like crickets, Ubx is responsible for creating a 'jumping' hind leg. In others, such as bees, it makes a pollen basket — a 'naked,' bristle-free leg region that creates a space for packing pollen."

"Other studies have shed some light on this gene's role in this realm, but our team examined in great detail how the modifications take place," added Zachary Huang, MSU entomologist.

Ubx represses the development of bristles on bees' hind legs, creating a smooth surface that can be used for packing pollen. This important discovery can be used as a foray into more commercial studies focused on providing means to enhance a bee's pollination ability – the bigger the pollen basket, the more pollen that can be packed in it and transported back to the hive.

While workers have these distinct features, queens do not. The team confirmed this by isolating and silencing Ubx. This made the pollen baskets completely disappear, altered the growth of the pollen comb and reduced the size of the pollen press. Interestingly, Ubx is also expressed in the same region of the hind legs in bumble bees, which are in the same family as honey bees. This finding suggests that the evolution of the pollen-gathering apparatus in all corbiculate bees may have a shared origin and could be traced to the acquisition of novel functions by Ubx.

In another interesting finding, researchers identified that bees living in more complex social structures have an advantage over isolated populations in developing these important functions.

"The pollen baskets are much less elaborate or completely absent in bees that are less socially complex," Huang said. "We conclude that the evolution of pollen baskets is a major innovation among social insects and is tied directly to more complex social behaviors."

The value of agricultural crops dependent on honey bee pollination was estimated to be $14.6 billion per year in the U.S. in 2013.

"In Michigan alone, the fruit and vegetable industries produce over $2 billion per year, and nearly 50 percent of that value is due entirely to honey bee pollination," said Huang. "This shows that bees are contributing significantly to the state and national economy."

This study, along with future research by Popadic and Huang, may provide an option for improving the shrinking population of bees' pollen-collecting capacity, leading to increased pollination and hopeful increases in fruit and vegetable production.

This research was funded to Popadic by the National Institute of General Medical Sciences of the National Institutes of Health, number GM071927.

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world.

Julie O'Connor | EurekAlert!
Further information:
http://www.research.wayne.edu
http://www.wayne.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>