Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research led by NYU Langone decodes genome for species of malaria

10.10.2008
Landmark finding could lead to treatment or vaccine for worldwide scourge, says cover story in Nature

In research aimed at addressing a global epidemic, a team of scientists from around the world has cracked the genetic code for the parasite that is responsible for up to 40 percent of the 515 million annual malaria infections worldwide, Nature reveals in its October 9 cover story.

Led by a parasitologist from NYU Langone Medical Center, Jane Carlton, PhD, some 40 researchers sequenced the genome of Plasmodium vivax (P. vivax), one of four malaria parasites that routinely affect humans. P. vivax, which is increasingly resistant to some antimalarial drugs, is the species most common outside Africa, particularly in Asia and the Americas, including the United States, the site of periodic outbreaks.

Vivax malaria, as it is known, is believed more robust and resilient than its cousin, the more deadly malaria species, P. falciparum – and is thus more difficult to eradicate. Distinctively, vivax malaria can be transmitted by mosquitoes in cooler temperatures. It also has a dormant stage that enables it to re-emerge as climates warm, causing "relapses" of the disease months and even years after a first attack.

Symptoms for the two strains of malaria are similar – flu-like, featuring fever and abdominal pain, often leading to severe anemia – and, in children, lifelong learning disabilities. Malaria is a disease of poorer populations, and overall is estimated annually to kill more than a million people worldwide.

Researchers also identified several pathways in the P. vivax parasite that could eventually be targets for drug treatment. Both P. vivax and P. falciparum vivax are also being studied to identify potential vaccine targets.

The research is regarded as all the more significant in that P. vivax has long remained little-researched, little-known and little-understood. Such neglect is mainly due to the focus on the more deadly malaria species, P. falciparum -- P. vivax is seldom lethal -- and also because the parasite cannot be grown in a lab setting. Further, the growing burden of vivax malaria will complicate efforts to control P. falciparum in areas where the two coincide.

Indeed, the project that led to the landmark genetic decoding was in the works for a total of six years, involving researchers from England, Spain, Australia and Brazil as well as the United States. After two years, remaining funds from the P. falciparum genome project were exhausted, and funding from the Burroughs Wellcome Fund and the National Institutes of Health allowed its completion.

P. vivax is the second species of human malaria parasite to be sequenced. Researchers found the genome for P. vivax dramatically different from the genomes of three other sequenced malaria parasites – different in content, structure and complexity. They used whole genome shotgun methods to produce high-quality sequences that will enable malaria researchers worldwide to undertake further research on the parasite. The next step is to sequence six other P. vivax genomes – from Brazil, Mauritania, India, North Korea and Indonesia -- to identify novel vaccine candidates and generate an evolutionary map of the species.

"This project is a tribute to the collegiality and tenacity of the vivax malaria community," says Jane M. Carlton, associate professor at NYU School of Medicine's Department of Medical Parasitology, who led a team of investigators from around the world. "They have persevered despite financial tribulations and lack of interest to generate an invaluable resource. These findings will be used by all malariologists for years to come to advance scientific investigation into this neglected species."

"The availability of genome sequence data has great potential to accelerate the identification and development of novel vaccines and therapeutics against this major human pathogen," says Claire Fraser-Liggett, PhD, director of the Institute of Genomic Sciences at University of Maryland School of Medicine and formerly president of The Institute for Genomic Research, Rockville Maryland where the project began. "Dr. Carlton is to be congratulated for her leadership role in bringing this project to completion."

"Unveiling the full genome sequence of Plasmodium vivax is a tremendous advance – a huge step forward in parasite biology and the fight against malaria," says Nick White, MD, professor of tropical medicine, Oxford University, England and Mahidol University, Thailand.

Anitra Haithcock | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>