Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research led by NYU Langone decodes genome for species of malaria

10.10.2008
Landmark finding could lead to treatment or vaccine for worldwide scourge, says cover story in Nature

In research aimed at addressing a global epidemic, a team of scientists from around the world has cracked the genetic code for the parasite that is responsible for up to 40 percent of the 515 million annual malaria infections worldwide, Nature reveals in its October 9 cover story.

Led by a parasitologist from NYU Langone Medical Center, Jane Carlton, PhD, some 40 researchers sequenced the genome of Plasmodium vivax (P. vivax), one of four malaria parasites that routinely affect humans. P. vivax, which is increasingly resistant to some antimalarial drugs, is the species most common outside Africa, particularly in Asia and the Americas, including the United States, the site of periodic outbreaks.

Vivax malaria, as it is known, is believed more robust and resilient than its cousin, the more deadly malaria species, P. falciparum – and is thus more difficult to eradicate. Distinctively, vivax malaria can be transmitted by mosquitoes in cooler temperatures. It also has a dormant stage that enables it to re-emerge as climates warm, causing "relapses" of the disease months and even years after a first attack.

Symptoms for the two strains of malaria are similar – flu-like, featuring fever and abdominal pain, often leading to severe anemia – and, in children, lifelong learning disabilities. Malaria is a disease of poorer populations, and overall is estimated annually to kill more than a million people worldwide.

Researchers also identified several pathways in the P. vivax parasite that could eventually be targets for drug treatment. Both P. vivax and P. falciparum vivax are also being studied to identify potential vaccine targets.

The research is regarded as all the more significant in that P. vivax has long remained little-researched, little-known and little-understood. Such neglect is mainly due to the focus on the more deadly malaria species, P. falciparum -- P. vivax is seldom lethal -- and also because the parasite cannot be grown in a lab setting. Further, the growing burden of vivax malaria will complicate efforts to control P. falciparum in areas where the two coincide.

Indeed, the project that led to the landmark genetic decoding was in the works for a total of six years, involving researchers from England, Spain, Australia and Brazil as well as the United States. After two years, remaining funds from the P. falciparum genome project were exhausted, and funding from the Burroughs Wellcome Fund and the National Institutes of Health allowed its completion.

P. vivax is the second species of human malaria parasite to be sequenced. Researchers found the genome for P. vivax dramatically different from the genomes of three other sequenced malaria parasites – different in content, structure and complexity. They used whole genome shotgun methods to produce high-quality sequences that will enable malaria researchers worldwide to undertake further research on the parasite. The next step is to sequence six other P. vivax genomes – from Brazil, Mauritania, India, North Korea and Indonesia -- to identify novel vaccine candidates and generate an evolutionary map of the species.

"This project is a tribute to the collegiality and tenacity of the vivax malaria community," says Jane M. Carlton, associate professor at NYU School of Medicine's Department of Medical Parasitology, who led a team of investigators from around the world. "They have persevered despite financial tribulations and lack of interest to generate an invaluable resource. These findings will be used by all malariologists for years to come to advance scientific investigation into this neglected species."

"The availability of genome sequence data has great potential to accelerate the identification and development of novel vaccines and therapeutics against this major human pathogen," says Claire Fraser-Liggett, PhD, director of the Institute of Genomic Sciences at University of Maryland School of Medicine and formerly president of The Institute for Genomic Research, Rockville Maryland where the project began. "Dr. Carlton is to be congratulated for her leadership role in bringing this project to completion."

"Unveiling the full genome sequence of Plasmodium vivax is a tremendous advance – a huge step forward in parasite biology and the fight against malaria," says Nick White, MD, professor of tropical medicine, Oxford University, England and Mahidol University, Thailand.

Anitra Haithcock | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>