Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could lead to new drugs for major diseases

11.06.2012
Researchers at the University of Gothenburg, Sweden, are working to develop substances that can prevent parasites, bacteria and fungi from producing essential proteins, research that could, in the long term, lead to new drugs for several major diseases.

The World Health Organization (WHO) has announced that aminoacyl-tRNA synthetases – a type of enzyme – are important targets for the development of new drugs for several major diseases such as cancer, various parasitic diseases and bacterial and fungal infections.

These enzymes are involved in the production of proteins (protein synthesis) in all organisms. Their job is to ensure that the right amino acid is linked to the growing protein chain. These enzymes are essential for all living organisms.

Challenging research field
Researchers at the University of Gothenburg are currently undertaking basic research in this challenging field. The aim is to prevent the enzyme from producing proteins in bacteria, parasites or fungi, without stopping it from functioning in the human body.

"We're collaborating with researchers in several countries," says researcher Itedale Namro Redwan. "Our role has been to design and to synthesise substances that can be used for the development of drugs against parasitic diseases."

Looking for an effective substance
The enzymes' job of ensuring that the right amino acid is linked to the growing protein chain works in the same way in all types of cell, be they human or parasitic.

"The real challenge is identifying substances that act on enzymes in the parasite alone, without affecting the human enzymes at the same time," says Itedale Namro Redwan, who is making substances that can prevent bacterial and parasitic enzymes from functioning, but do not affect human enzymes. If this proves possible, it will help in the development of drugs for several major diseases.

"One of our main objectives has been to produce potent and selective substances that can be used to gain understanding of how these enzymes work. A greater understanding of their function would contribute to the development of medication for diseases like elephantitis."

Could prevent major diseases
Elephantitis, also known as filiaris, affects more than 120 million people in the developing world, and is caused by a worm that lives in the infected person's lymphatic vessels.

The potentially active molecules are being designed using computer-based molecular modelling techniques, with the resulting molecules subsequently synthesised via various chemical reactions.

"One of the best things about being a medicinal chemist is getting to plan a synthetic pathway that'll result in a specific substance, starting the reaction and then realising that the reaction's has worked," says Itedale Namro Redwan. "Better still is finding out that the molecule has performed as expected in a biological test."

The activity of the synthesised substances is assessed by partners through biological testing on, for example, aminoacyl-tRNA synthetase isolated from E. coli or filiaris parasites.

The thesis "Design and Synthesis of Potential Aminoacyl-tRNA Synthetase Inhibitors" has been successfully publicly defended at the University of Gothenburg on 11 May 2012.

For more information, please contact: Itedale Namro Redwan, Department of Chemistry and Molecular Biology
Telephone: +46 (0)31 786 9097
E-mail: itedale.namro@chem.gu.se

Bibliographic data
Title: Investigation, Optimisation and Synthesis of Sulfamoyloxy-linked Aminoacyl-AMP Analogues. Authors: Itedale Namro Redwan, Thomas Ljungdahl and Morten Grøtli.

Journal: Tetrahedron, 2012, 68, 1507-1514. http://www.sciencedirect.com/science/article/pii/S0040402011018783

Helena Aaberg | idw
Further information:
http://www.gu.se
http://hdl.handle.net/2077/28794

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>