Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Involving Thyroid Hormone Lays Foundation for More Targeted Drug Development

25.10.2011
Research led by St. Jude Children’s Research Hospital scientists advances a strategy for taming the side effects and enhancing the therapeutic benefits of steroids and other medications that work by disrupting the activity of certain hormones.

The approach relies on a small molecule developed at St. Jude. In this study, scientists showed that a compound known as SJ-AK selectively blocked the activity of genes in a cell signaling pathway regulated by thyroid hormone.

Investigators showed that SJ-AK also affected cells growing in the laboratory, reducing cell proliferation as well as the production and secretion of a growth hormone regulated by thyroid hormone. The research appears in the October issue of the scientific journal ACS Chemical Biology.

The findings raise hope that compounds like SJ-AK will lead to drugs with more tailored effects by selectively controlling signaling pathways that switch genes on and off. This research focused on a pathway controlled by a thyroid hormone. Investigators said, however, the approach also could potentially be used to target pathways regulated by glucocorticoid, estrogen, androgen and other hormones that are widely used to treat cancer and other conditions but that also have serious side effects.

“This study offers the first evidence it is possible to shut down a portion of the signaling network activated by a particular hormone,” said R. Kiplin Guy, Ph.D., chair of the St. Jude Chemical Biology and Therapeutics Department. Guy is the senior author. The first author is Prabodh Sadana, Ph.D., a former St. Jude postdoctoral fellow who now works in the Department of Pharmaceutical Sciences at Northeastern Ohio Universities College of Medicine and Pharmacy.

Such selectivity could lead to a new generation of medications that promise greater effectiveness and fewer side effects. The new treatments could include steroids that fight leukemia or suppress the inflammation associated with autoimmune disorders without affecting metabolism or bone strength. Small molecules like SJ-AK might aid efforts to develop medicines to control the rapid, life-threatening over-production of a thyroid hormone known as thyroid storm. Guy said the thyroid hormone pathway is also being studied for new opportunities to better regulate obesity or metabolic disease related to cholesterol, triglycerides and fatty acids.

For this study, researchers compared the activity of SJ-AK and NH-3. The compounds use different techniques to target distinct spots in a thyroid hormone signaling pathway.

NH-3 works by competing with a thyroid hormone to bind to the receptor in the cell nucleus. If the hormone wins the competition, the binding starts a biochemical cascade that regulates the activity of genes in the pathway. Those genes produce the proteins that affect growth and other key biological processes. If NH-3 binds to the receptor instead, the impact is like flipping the switch that cuts electricity to the entire building. The entire pathway remains dormant, which is not always desirable.

SJ-AK was developed in Guy’s laboratory. Rather than binding to the hormone receptor like NH-3 does, SJ-AK targets the next step in the pathway. SJ-AK works by displacing proteins called coactivators. Coactivator proteins normally bind to a pocket that is created when a thyroid hormone and receptor bind. As a result, SJ-AK functions like a circuit breaker, selectively blocking parts of the hormone signaling pathway.

In this study, researchers showed that while NH-3 and SJ-AK both target the same signaling pathway and some of the same genes, SJ-AK affects far fewer genes. In laboratory screening tests, researchers found the activity of 193 genes was affected by thyroid hormone. The genes included 79 whose activity was affected by NH-3 and 28 affected by SJ-AK. Investigators showed NH-3 and SJ-AK had little impact on genes outside the thyroid hormone pathways.

Scientists showed NH-3 and SJ-AK also altered the activity of cells. Growth hormone secretion increased 50 percent following the addition of thyroid hormone to human cells growing in the laboratory. When SJ-AK was added, the secretion of growth hormone fell. In another laboratory experiment, researchers reported that both NH-3 and SJ-AK blocked the cell proliferation triggered by growth hormone secretion.

Other authors are Jong Yeon Hwang and Ramy Attia, both formerly of St. Jude; Geoffrey Neale, of St. Jude; and Leggy Arnold of the University of Wisconsin at Milwaukee.

This research was funded in part by the National Institutes of Health and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other life-threatening diseases. The hospital’s research has helped push overall survival rates for childhood cancer from less than 20 percent when the institution opened to almost 80 percent today. It is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and no family ever pays St. Jude for care. For more information, visit www.stjude.org.
St. Jude Public Relations Contacts:
Summer Freeman
(desk) 901-595-3061
(cell) 901-297-9861
summer.freeman@stjude.org
Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875
carrie.strehlau@stjude.org

Summer Freeman | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>