Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Involving Thyroid Hormone Lays Foundation for More Targeted Drug Development

25.10.2011
Research led by St. Jude Children’s Research Hospital scientists advances a strategy for taming the side effects and enhancing the therapeutic benefits of steroids and other medications that work by disrupting the activity of certain hormones.

The approach relies on a small molecule developed at St. Jude. In this study, scientists showed that a compound known as SJ-AK selectively blocked the activity of genes in a cell signaling pathway regulated by thyroid hormone.

Investigators showed that SJ-AK also affected cells growing in the laboratory, reducing cell proliferation as well as the production and secretion of a growth hormone regulated by thyroid hormone. The research appears in the October issue of the scientific journal ACS Chemical Biology.

The findings raise hope that compounds like SJ-AK will lead to drugs with more tailored effects by selectively controlling signaling pathways that switch genes on and off. This research focused on a pathway controlled by a thyroid hormone. Investigators said, however, the approach also could potentially be used to target pathways regulated by glucocorticoid, estrogen, androgen and other hormones that are widely used to treat cancer and other conditions but that also have serious side effects.

“This study offers the first evidence it is possible to shut down a portion of the signaling network activated by a particular hormone,” said R. Kiplin Guy, Ph.D., chair of the St. Jude Chemical Biology and Therapeutics Department. Guy is the senior author. The first author is Prabodh Sadana, Ph.D., a former St. Jude postdoctoral fellow who now works in the Department of Pharmaceutical Sciences at Northeastern Ohio Universities College of Medicine and Pharmacy.

Such selectivity could lead to a new generation of medications that promise greater effectiveness and fewer side effects. The new treatments could include steroids that fight leukemia or suppress the inflammation associated with autoimmune disorders without affecting metabolism or bone strength. Small molecules like SJ-AK might aid efforts to develop medicines to control the rapid, life-threatening over-production of a thyroid hormone known as thyroid storm. Guy said the thyroid hormone pathway is also being studied for new opportunities to better regulate obesity or metabolic disease related to cholesterol, triglycerides and fatty acids.

For this study, researchers compared the activity of SJ-AK and NH-3. The compounds use different techniques to target distinct spots in a thyroid hormone signaling pathway.

NH-3 works by competing with a thyroid hormone to bind to the receptor in the cell nucleus. If the hormone wins the competition, the binding starts a biochemical cascade that regulates the activity of genes in the pathway. Those genes produce the proteins that affect growth and other key biological processes. If NH-3 binds to the receptor instead, the impact is like flipping the switch that cuts electricity to the entire building. The entire pathway remains dormant, which is not always desirable.

SJ-AK was developed in Guy’s laboratory. Rather than binding to the hormone receptor like NH-3 does, SJ-AK targets the next step in the pathway. SJ-AK works by displacing proteins called coactivators. Coactivator proteins normally bind to a pocket that is created when a thyroid hormone and receptor bind. As a result, SJ-AK functions like a circuit breaker, selectively blocking parts of the hormone signaling pathway.

In this study, researchers showed that while NH-3 and SJ-AK both target the same signaling pathway and some of the same genes, SJ-AK affects far fewer genes. In laboratory screening tests, researchers found the activity of 193 genes was affected by thyroid hormone. The genes included 79 whose activity was affected by NH-3 and 28 affected by SJ-AK. Investigators showed NH-3 and SJ-AK had little impact on genes outside the thyroid hormone pathways.

Scientists showed NH-3 and SJ-AK also altered the activity of cells. Growth hormone secretion increased 50 percent following the addition of thyroid hormone to human cells growing in the laboratory. When SJ-AK was added, the secretion of growth hormone fell. In another laboratory experiment, researchers reported that both NH-3 and SJ-AK blocked the cell proliferation triggered by growth hormone secretion.

Other authors are Jong Yeon Hwang and Ramy Attia, both formerly of St. Jude; Geoffrey Neale, of St. Jude; and Leggy Arnold of the University of Wisconsin at Milwaukee.

This research was funded in part by the National Institutes of Health and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other life-threatening diseases. The hospital’s research has helped push overall survival rates for childhood cancer from less than 20 percent when the institution opened to almost 80 percent today. It is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and no family ever pays St. Jude for care. For more information, visit www.stjude.org.
St. Jude Public Relations Contacts:
Summer Freeman
(desk) 901-595-3061
(cell) 901-297-9861
summer.freeman@stjude.org
Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875
carrie.strehlau@stjude.org

Summer Freeman | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>