Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Involving Thyroid Hormone Lays Foundation for More Targeted Drug Development

25.10.2011
Research led by St. Jude Children’s Research Hospital scientists advances a strategy for taming the side effects and enhancing the therapeutic benefits of steroids and other medications that work by disrupting the activity of certain hormones.

The approach relies on a small molecule developed at St. Jude. In this study, scientists showed that a compound known as SJ-AK selectively blocked the activity of genes in a cell signaling pathway regulated by thyroid hormone.

Investigators showed that SJ-AK also affected cells growing in the laboratory, reducing cell proliferation as well as the production and secretion of a growth hormone regulated by thyroid hormone. The research appears in the October issue of the scientific journal ACS Chemical Biology.

The findings raise hope that compounds like SJ-AK will lead to drugs with more tailored effects by selectively controlling signaling pathways that switch genes on and off. This research focused on a pathway controlled by a thyroid hormone. Investigators said, however, the approach also could potentially be used to target pathways regulated by glucocorticoid, estrogen, androgen and other hormones that are widely used to treat cancer and other conditions but that also have serious side effects.

“This study offers the first evidence it is possible to shut down a portion of the signaling network activated by a particular hormone,” said R. Kiplin Guy, Ph.D., chair of the St. Jude Chemical Biology and Therapeutics Department. Guy is the senior author. The first author is Prabodh Sadana, Ph.D., a former St. Jude postdoctoral fellow who now works in the Department of Pharmaceutical Sciences at Northeastern Ohio Universities College of Medicine and Pharmacy.

Such selectivity could lead to a new generation of medications that promise greater effectiveness and fewer side effects. The new treatments could include steroids that fight leukemia or suppress the inflammation associated with autoimmune disorders without affecting metabolism or bone strength. Small molecules like SJ-AK might aid efforts to develop medicines to control the rapid, life-threatening over-production of a thyroid hormone known as thyroid storm. Guy said the thyroid hormone pathway is also being studied for new opportunities to better regulate obesity or metabolic disease related to cholesterol, triglycerides and fatty acids.

For this study, researchers compared the activity of SJ-AK and NH-3. The compounds use different techniques to target distinct spots in a thyroid hormone signaling pathway.

NH-3 works by competing with a thyroid hormone to bind to the receptor in the cell nucleus. If the hormone wins the competition, the binding starts a biochemical cascade that regulates the activity of genes in the pathway. Those genes produce the proteins that affect growth and other key biological processes. If NH-3 binds to the receptor instead, the impact is like flipping the switch that cuts electricity to the entire building. The entire pathway remains dormant, which is not always desirable.

SJ-AK was developed in Guy’s laboratory. Rather than binding to the hormone receptor like NH-3 does, SJ-AK targets the next step in the pathway. SJ-AK works by displacing proteins called coactivators. Coactivator proteins normally bind to a pocket that is created when a thyroid hormone and receptor bind. As a result, SJ-AK functions like a circuit breaker, selectively blocking parts of the hormone signaling pathway.

In this study, researchers showed that while NH-3 and SJ-AK both target the same signaling pathway and some of the same genes, SJ-AK affects far fewer genes. In laboratory screening tests, researchers found the activity of 193 genes was affected by thyroid hormone. The genes included 79 whose activity was affected by NH-3 and 28 affected by SJ-AK. Investigators showed NH-3 and SJ-AK had little impact on genes outside the thyroid hormone pathways.

Scientists showed NH-3 and SJ-AK also altered the activity of cells. Growth hormone secretion increased 50 percent following the addition of thyroid hormone to human cells growing in the laboratory. When SJ-AK was added, the secretion of growth hormone fell. In another laboratory experiment, researchers reported that both NH-3 and SJ-AK blocked the cell proliferation triggered by growth hormone secretion.

Other authors are Jong Yeon Hwang and Ramy Attia, both formerly of St. Jude; Geoffrey Neale, of St. Jude; and Leggy Arnold of the University of Wisconsin at Milwaukee.

This research was funded in part by the National Institutes of Health and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other life-threatening diseases. The hospital’s research has helped push overall survival rates for childhood cancer from less than 20 percent when the institution opened to almost 80 percent today. It is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and no family ever pays St. Jude for care. For more information, visit www.stjude.org.
St. Jude Public Relations Contacts:
Summer Freeman
(desk) 901-595-3061
(cell) 901-297-9861
summer.freeman@stjude.org
Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875
carrie.strehlau@stjude.org

Summer Freeman | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>