Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research provides new insight into age-related muscle decline

25.09.2009
Research published in the journal Genetics suggests new ways to stop byproducts from the air we breathe from harming our muscles

If you think the air outside is polluted, a new research report in the September 2009 issue of the journal Genetics (http://www.genetics.org) might make you to think twice about the air inside our bodies too.

That's because researchers show how about 3 percent of the air we breathe gets converted into harmful superoxides, which ultimately harm our muscles. Specifically, these superoxides lead to the creation of a toxic molecule called "reactive oxygen species" or ROS, which is shown to be particularly harmful to muscle tissue, and may lead to problems ranging from aging and frailty to Parkinson's disease and cancer.

"At a minimum, we hope this research leads to new ways of addressing inevitable declining physical performance and other age-dependent infirmities among the elderly," said Atanu Duttaroy, associate professor of biology at Howard University in Washington, D.C. and one of the researchers involved in the work.

To make their discovery, Duttaroy and colleagues built on their previous research showing that ROS-induced cellular damage happens in the same way in fruit flies and in mice. They started with fruit flies that lack mitochondrial superoxide dismutase enzyme (SOD), which provides the primary line of defense against ROS by capturing the superoxides and converting them to water. This lack of SOD caused the fruit flies to die within a day after hatching. Then, through genetic manipulation, the researchers "turned on" the production of SOD separately in nerves and muscles. SOD in nerves did not appear to make a significant difference in prolonging the fruit flies' lives, but it did make a difference when it was activated in their muscles. The survival of fruit flies with SOD "turned on" in their muscles increased, and for several days, they remained as active as their normal counterparts. Measurement of their muscle activity also showed that SOD helped the muscle work normally, helping survival.

"It's long been known that the oxygen we breath can be toxic, and this work provides a concrete example of that with real consequences." said Mark Johnston, Editor-in-Chief of the journal Genetics. "As baby boomers get older, the need to help older people stay mobile and fit has never been greater in our lifetimes. This study helps address this need by providing insight into what causes physical decline, and in turn, bringing us a step closer toward finding ways to stop or reverse it."

DETAILS: Tanja Godenschwege, Renée Forde, Claudette P. Davis, Anirban Paul, Kristopher Beckwith, and Atanu Duttaroy

Mitochondrial Superoxide Radicals Differentially Affect Muscle Activity and Neural Function Genetics 2009 183: 175-184. http://www.genetics.org/cgi/content/abstract/183/1/175

Since 1916, Genetics (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. Genetics, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:
http://www.andrew.cmu.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

Researchers identify cause of hereditary skeletal muscle disorder

22.02.2017 | Health and Medicine

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>