Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research identifies protein that regulates key 'fate' decision in cortical progenitor cells

24.09.2012
DOCK7 expression determines if radial glial cells will proliferate or differentiate

Cold Spring Harbor, NY – Researchers at Cold Spring Harbor Laboratory (CSHL) have solved an important piece of one of neuroscience's outstanding puzzles: how progenitor cells in the developing mammalian brain reproduce themselves while also giving birth to neurons that will populate the emerging cerebral cortex, the seat of cognition and executive function in the mature brain.

CSHL Professor Linda Van Aelst, Ph.D., and colleagues set out to solve a particular mystery concerning radial glial cells, or RGCs, which are progenitors of pyramidal neurons, the most common type of excitatory nerve cell in the mature mammalian cortex.

In genetically manipulated mice, Van Aelst's team demonstrated that a protein called DOCK7 plays a central regulatory role in the process that determines how and when an RGC "decides" either to proliferate, i.e., make more progenitor cells like itself, or give rise to cells that will mature, or "differentiate," into pyramidal neurons. The findings are reported in the September 2012 issue of Nature Neuroscience.

DOCK7 was already known to be highly expressed in various parts of the developing rodent brain, including the hippocampus and cortex. It had been shown by Van Aelst and colleagues to control the formation of axons – wiring that connects neurons.

Balancing proliferation and differentiation

In their newly published research, Van Aelst, along with Drs. Yu-Ting Yang and Chia-Lin Wang, a graduate student and postdoctoral fellow, respectively, in the Van Aelst lab, elucidate DOCK7's regulatory role in experiments in which the protein was alternately silenced and overexpressed.

When the protein was silenced in mouse embryos, neuronal differentiation was impeded; RGCs remained in their progenitor state. When DOCK7 was overexpressed, RGCs differentiated prematurely, resulting in more neurons and fewer RGCs.

These and related experiments revealed the mechanism through which DOCK7 expression affects the two essential but contrasting functions of RGCs. "Self-renewability of RGCs must be tightly balanced with differentiation for proper cortical development," says Van Aelst.

"The mechanism we discovered to be central in the determination of RGC fate, is called interkinetic nuclear migration, or INM," she continues, "and you can see it in action in the movies made by Drs. Wang and Yang."

In INM, an RGC cell nucleus visibly travels over the course of the cell cycle "upward" and "downward" between opposing sides of the apical-most region of the neuroepithelium, called the ventricular zone or VZ. Nuclei move away from the apical surface during the G1 phase, undergo S phase at a basal location in the VZ, and return to the apical surface during G2 to divide at the apical location.

It is DOCK7 that regulates this movement; in particular, the movement from the basal to apical location, the CSHL team has now demonstrated. On what appears to be the lower surface of the VZ, the apical surface, signals directing the RCG toward proliferation – i.e., reproduction of other RGCs – are dominant. On the upper or 'basal' side of the VZ, dominant signals coax the RGC to split into new intermediate progenitors or neurons.

Migration explained: DOCK7, TACC3 and centrosomes

"The cellular machinery that controls INM involves a protein complex of actin and myosin, called actomyosin, as well as microtubule-dependent systems," notes Dr. Wang. "We show how DOCK7 exerts its effects by antagonizing the microtubule growth-promoting function of a protein called TACC3." That protein, tellingly, is associated with the centrosome, the cellular organ that organizes microtubules, and regulates the growth of microtubules emanating from the centrosome, thereby coupling the centrosome and nucleus .

As Dr. Yang points out, DOCK7 acts by antagonizing the microtubule growth-promoting function of TACC3. Silencing of DOCK7 accelerates the movement of RGC nuclei from the basal to apical side of the VZ, resulting in extended apical residency of RGC nuclei and apical mitoses that lead to an increase in RGCs and a reduction in neurons. DOCK7 overexpression, on the other hand, leads to extended residence of RGC nuclei at basal locations and mitoses away from the apical surface, where the production of new neurons increases, at the expense of the proliferation of more progenitors.

Beyond elucidating an important mechanism of cortical development, the new research may shed light on pathologies seen in microcephaly, a condition marked by an abnormally small brain size, as well as neurodevelopmental disorders such as schizophrenia. "If DOCK7 expression is abnormal, you perturb normal neurogenesis," says Van Aelst. "In future work we hope to explore whether an imbalance in neurogenesis caused by DOCK7 aberrations is associated with a subsequent imbalance in cortical circuitry, and various known pathologies."

This work was supported by U.S. National Institutes of Health grant MH082808 and a New York STARR consortium grant. Other support came from U.S. National Institutes of Health research training grant T32 CA 148056-1.

"DOCK7 interacts with TACC3 to regulate interkinetic nuclear migration and cortical neurogenesis" appears in the September 2012 issue of Nature Neuroscience. The authors are: Yu-Ting Yang, Chia-Lin Wang and Linda Van Aelst. The paper can be obtained online at: http://www.nature.com/neuro/journal/v15/n9/full/nn.3171.html

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit www.cshl.edu.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>