Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research identifies how mouth cells resist Candida infection

Candida albicans is a common fungus found living in, and on, many parts of the human body.

Usually this species causes no harm to humans unless it can breach the body's immune defences, where can lead to serious illness or death. It is known as an opportunistic pathogen that can colonise and infect individuals with a compromised immune system.

New research, presented today at the Society for General Microbiology's Autumn Conference, gives us a greater understanding of how mucosal surfaces in the body respond to C. albicans to prevent damage being done during infection.

Researchers from King's College London focused on oral epithelial cells, a mucosal layer of cells that line the mouth, providing a barrier against microbes. The group challenged oral epithelial cells grown in vitro with C. albicans, looking at gene expression six and 24 hours after infection.

The results showed that a molecular signalling pathway know as the 'PI3 Kinase pathway' is activated as soon as five minutes after the epithelial cells encounter C. albicans, before the fungus has time to become invasive. This pathway seems to be involved in priming epithelial cells to protect against future damage. Inhibiting the PI3 Kinase pathway increased the amount of damage caused by C. albicans and reduced the normal tissue healing response.

This finding makes the PI3 Kinase pathway an attractive target for new therapeutics against C. albicans. Dr David Moyes, who presented the work at the conference, hopes that by boosting the activity of the pathway it may be possible to reduce the fungus's ability to cause tissue damage.

He explains, "We are developing a complete picture of how C. albicans interacts with the epithelial cells that make up our mucosal surfaces and learning how they are able to discriminate between harmless and harmful microbes.

"Many of the symptoms of C. albicans infection, are caused by the body's incorrect or overactive response to cell damage. Developing therapies that act on the patient, not the microbe, provides an entirely novel way of treating an infection and the likelihood of resistance is much reduced."

Candida infections are the third most commonly acquired hospital blood-borne infection, resulting in 50,000 deaths annually. Over 75 per cent of fertile age women will suffer from at least one Candida infection and there are around 2 million cases of oral candidiasis each year among HIV/AIDS patients.

Benjamin Thompson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>