Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Identifies Gene Necessary for Successful Repair of Muscle Damage

13.04.2011
May Revolutionize Therapy in Muscular Dystrophy and Other Neurodegenerative Disorders

Scientists at UMDNJ-Robert Wood Johnson Medical School are a step closer to treating, and perhaps preventing, muscle damage caused by neurodegenerative disorders and other forms of disease.

In a newly published study, released today and cited as a Paper of the Week by the Journal of Biological Chemistry, the team has discovered that the gene polymerase I and transcript release factor, or PTRF, is an essential component of the cell process that repairs damaged muscle tissue. This discovery has the potential to lead to development of therapeutic treatment for patients who suffer from severe complications of diseases such as muscular dystrophy, cardiovascular disorders and other degenerative conditions.

The research was led by Jianjie Ma, PhD, professor and acting chair of physiology and biophysics at UMDNJ-Robert Wood Johnson Medical School. Hua Zhu, PhD, an instructor in Dr. Ma’s laboratory, is the first author on the manuscript describing this discovery.

According to Dr. Ma, human cells are continuously injured and naturally repaired throughout their life span. For instance, micro tears can occur as muscles contract within the body during normal everyday activities. However, diseases such as diabetes, cardiovascular disorders and muscular dystrophy, and even aging, compromise the method through which the body repairs its own tissues, resulting in severe damage. His research team announced in December 2008 that it had discovered MG53 as a key initiator of membrane repair in damaged tissue, making it the first group to specifically pinpoint a protein responsible for promoting cell repair.

In this new study, the team’s research has revealed that in order for MG53 to successfully repair damaged tissue, it must work cooperatively with PTRF. During the muscle repair process PTRF acts as a docking protein, potentially binding MG53 with exposed membrane cholesterol at the injury site. When PTRF is absent in cells, the binding process is interrupted and MG53 can not successfully repair damaged tissues.

“The identification of PTRF as a molecule that anchors MG53 to injured tissue will help us to better understand how a cell membrane can repair itself,” said Dr. Ma. “The discovery of PTRF as a necessary component in the initiation of muscle repair is another hopeful step toward the development of therapeutic treatments for patients with muscle and cardiovascular disease.”

The research was supported by grants from the National Institutes of Health. The paper may be found online at: http://www.jbc.org/content/286/15/e99924.full. A subscription may be required for access.

About UMDNJ-Robert Wood Johnson Medical School

As one of the nation’s leading comprehensive medical schools, UMDNJ-Robert Wood Johnson Medical School is dedicated to the pursuit of excellence in education, research, health care delivery, and the promotion of community health. In cooperation with Robert Wood Johnson University Hospital, the medical school’s principal affiliate, they comprise New Jersey’s premier academic medical center. In addition, Robert Wood Johnson Medical School has 34 other hospital affiliates and ambulatory care sites throughout the region.

As one of the eight schools of the University of Medicine and Dentistry of New Jersey with 2,800 full-time and volunteer faculty, Robert Wood Johnson Medical School encompasses 22 basic science and clinical departments, hosts centers and institutes including The Cancer Institute of New Jersey, the Child Health Institute of New Jersey, the Center for Advanced Biotechnology and Medicine, the Environmental and Occupational Health Sciences Institute, and the Stem Cell Institute of New Jersey. The medical school maintains educational programs at the undergraduate, graduate and postgraduate levels for more than 1,500 students on its campuses in New Brunswick, Piscataway, and Camden, and provides continuing education courses for health care professionals and community education programs. To learn more about UMDNJ-Robert Wood Johnson Medical School, log on to rwjms.umdnj.edu. Find us online at www.Facebook.com/RWJMS and www.twitter.com/UMDNJ_RWJMS.

Jennifer Forbes | Newswise Science News
Further information:
http://www.umdnj.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>