Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Identifies Gene Necessary for Successful Repair of Muscle Damage

May Revolutionize Therapy in Muscular Dystrophy and Other Neurodegenerative Disorders

Scientists at UMDNJ-Robert Wood Johnson Medical School are a step closer to treating, and perhaps preventing, muscle damage caused by neurodegenerative disorders and other forms of disease.

In a newly published study, released today and cited as a Paper of the Week by the Journal of Biological Chemistry, the team has discovered that the gene polymerase I and transcript release factor, or PTRF, is an essential component of the cell process that repairs damaged muscle tissue. This discovery has the potential to lead to development of therapeutic treatment for patients who suffer from severe complications of diseases such as muscular dystrophy, cardiovascular disorders and other degenerative conditions.

The research was led by Jianjie Ma, PhD, professor and acting chair of physiology and biophysics at UMDNJ-Robert Wood Johnson Medical School. Hua Zhu, PhD, an instructor in Dr. Ma’s laboratory, is the first author on the manuscript describing this discovery.

According to Dr. Ma, human cells are continuously injured and naturally repaired throughout their life span. For instance, micro tears can occur as muscles contract within the body during normal everyday activities. However, diseases such as diabetes, cardiovascular disorders and muscular dystrophy, and even aging, compromise the method through which the body repairs its own tissues, resulting in severe damage. His research team announced in December 2008 that it had discovered MG53 as a key initiator of membrane repair in damaged tissue, making it the first group to specifically pinpoint a protein responsible for promoting cell repair.

In this new study, the team’s research has revealed that in order for MG53 to successfully repair damaged tissue, it must work cooperatively with PTRF. During the muscle repair process PTRF acts as a docking protein, potentially binding MG53 with exposed membrane cholesterol at the injury site. When PTRF is absent in cells, the binding process is interrupted and MG53 can not successfully repair damaged tissues.

“The identification of PTRF as a molecule that anchors MG53 to injured tissue will help us to better understand how a cell membrane can repair itself,” said Dr. Ma. “The discovery of PTRF as a necessary component in the initiation of muscle repair is another hopeful step toward the development of therapeutic treatments for patients with muscle and cardiovascular disease.”

The research was supported by grants from the National Institutes of Health. The paper may be found online at: A subscription may be required for access.

About UMDNJ-Robert Wood Johnson Medical School

As one of the nation’s leading comprehensive medical schools, UMDNJ-Robert Wood Johnson Medical School is dedicated to the pursuit of excellence in education, research, health care delivery, and the promotion of community health. In cooperation with Robert Wood Johnson University Hospital, the medical school’s principal affiliate, they comprise New Jersey’s premier academic medical center. In addition, Robert Wood Johnson Medical School has 34 other hospital affiliates and ambulatory care sites throughout the region.

As one of the eight schools of the University of Medicine and Dentistry of New Jersey with 2,800 full-time and volunteer faculty, Robert Wood Johnson Medical School encompasses 22 basic science and clinical departments, hosts centers and institutes including The Cancer Institute of New Jersey, the Child Health Institute of New Jersey, the Center for Advanced Biotechnology and Medicine, the Environmental and Occupational Health Sciences Institute, and the Stem Cell Institute of New Jersey. The medical school maintains educational programs at the undergraduate, graduate and postgraduate levels for more than 1,500 students on its campuses in New Brunswick, Piscataway, and Camden, and provides continuing education courses for health care professionals and community education programs. To learn more about UMDNJ-Robert Wood Johnson Medical School, log on to Find us online at and

Jennifer Forbes | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>