Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Identifies Gene Necessary for Successful Repair of Muscle Damage

13.04.2011
May Revolutionize Therapy in Muscular Dystrophy and Other Neurodegenerative Disorders

Scientists at UMDNJ-Robert Wood Johnson Medical School are a step closer to treating, and perhaps preventing, muscle damage caused by neurodegenerative disorders and other forms of disease.

In a newly published study, released today and cited as a Paper of the Week by the Journal of Biological Chemistry, the team has discovered that the gene polymerase I and transcript release factor, or PTRF, is an essential component of the cell process that repairs damaged muscle tissue. This discovery has the potential to lead to development of therapeutic treatment for patients who suffer from severe complications of diseases such as muscular dystrophy, cardiovascular disorders and other degenerative conditions.

The research was led by Jianjie Ma, PhD, professor and acting chair of physiology and biophysics at UMDNJ-Robert Wood Johnson Medical School. Hua Zhu, PhD, an instructor in Dr. Ma’s laboratory, is the first author on the manuscript describing this discovery.

According to Dr. Ma, human cells are continuously injured and naturally repaired throughout their life span. For instance, micro tears can occur as muscles contract within the body during normal everyday activities. However, diseases such as diabetes, cardiovascular disorders and muscular dystrophy, and even aging, compromise the method through which the body repairs its own tissues, resulting in severe damage. His research team announced in December 2008 that it had discovered MG53 as a key initiator of membrane repair in damaged tissue, making it the first group to specifically pinpoint a protein responsible for promoting cell repair.

In this new study, the team’s research has revealed that in order for MG53 to successfully repair damaged tissue, it must work cooperatively with PTRF. During the muscle repair process PTRF acts as a docking protein, potentially binding MG53 with exposed membrane cholesterol at the injury site. When PTRF is absent in cells, the binding process is interrupted and MG53 can not successfully repair damaged tissues.

“The identification of PTRF as a molecule that anchors MG53 to injured tissue will help us to better understand how a cell membrane can repair itself,” said Dr. Ma. “The discovery of PTRF as a necessary component in the initiation of muscle repair is another hopeful step toward the development of therapeutic treatments for patients with muscle and cardiovascular disease.”

The research was supported by grants from the National Institutes of Health. The paper may be found online at: http://www.jbc.org/content/286/15/e99924.full. A subscription may be required for access.

About UMDNJ-Robert Wood Johnson Medical School

As one of the nation’s leading comprehensive medical schools, UMDNJ-Robert Wood Johnson Medical School is dedicated to the pursuit of excellence in education, research, health care delivery, and the promotion of community health. In cooperation with Robert Wood Johnson University Hospital, the medical school’s principal affiliate, they comprise New Jersey’s premier academic medical center. In addition, Robert Wood Johnson Medical School has 34 other hospital affiliates and ambulatory care sites throughout the region.

As one of the eight schools of the University of Medicine and Dentistry of New Jersey with 2,800 full-time and volunteer faculty, Robert Wood Johnson Medical School encompasses 22 basic science and clinical departments, hosts centers and institutes including The Cancer Institute of New Jersey, the Child Health Institute of New Jersey, the Center for Advanced Biotechnology and Medicine, the Environmental and Occupational Health Sciences Institute, and the Stem Cell Institute of New Jersey. The medical school maintains educational programs at the undergraduate, graduate and postgraduate levels for more than 1,500 students on its campuses in New Brunswick, Piscataway, and Camden, and provides continuing education courses for health care professionals and community education programs. To learn more about UMDNJ-Robert Wood Johnson Medical School, log on to rwjms.umdnj.edu. Find us online at www.Facebook.com/RWJMS and www.twitter.com/UMDNJ_RWJMS.

Jennifer Forbes | Newswise Science News
Further information:
http://www.umdnj.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>