Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research identifies a possible finite number of viruses

03.09.2013
Scientists determine new strategy to estimate total viral diversity in mammals

EcoHealth Alliance, a nonprofit organization that focuses on local conservation and global health issues, and the Center for Infection and Immunity (CII) at Columbia University's Mailman School of Public Health announced a new strategy to identify the total number of wildlife viruses that could potentially cause emerging disease outbreaks that threaten both public and wildlife health.

Combining field investigations with a new statistical approach, scientists estimate that there may exist a minimum of 320,000 viruses awaiting discovery from mammals alone. With over three-quarters of the emerging infectious diseases originating from wildlife this research gives scientists an estimate of the number of viral agents that may eventually cause a pandemic.

Diseases such as SARS, West Nile virus, HIV/AIDS, Ebola and Avian influenza are all examples of a zoonotic diseases – those that originate in wildlife and are spread to humans. "For decades, we've faced the threat of future pandemics without knowing how many viruses are lurking in the environment, in wildlife, waiting to emerge. Finally we have a breakthrough – there aren't millions of unknown virus, just a few hundred thousand, and given the technology we have it's possible that in my lifetime, we'll know the identity of every unknown virus on the planet," says Peter Daszak, PhD, corresponding author and president of EcoHealth Alliance.

The Economics of Emerging Infectious Diseases

Emerging disease outbreaks cause both social concerns and economic problems. The threat alone of a new emerging disease such as the newly discovered Middle East Respiratory Syndrome (MERS) can directly affect the economic stability of the global economy. Economic losses due to the SARS outbreak was estimated to be anywhere from $15 billion to more than $50 billion. Scientists in this new study worked to establish a quantifiable cost to the discovery of these 320,000 new viruses: $1.2 million for one host species such as the Indian flying fox bat or a total of $6.3 billion for all mammals. The cost of discovering these viruses is a fraction of the cost required to respond to a global pandemic like H1N1 influenza or SARS. Given the disproportionate cost of discovering the rarest of the rare, scientists showed that limiting efforts to 85 percent of estimated viral diversity would bring the cost down to $1.4 billion.

"Historically, our whole approach to discovery has been altogether too random," says lead author Simon Anthony, D.Phil, a scientist at the Center for Infection and Immunity (CII) at Columbia University's Mailman School of Public Health. "What we currently know about viruses is very much biased towards those that have already spilled over into humans or animals and emerged as diseases. But the pool of all viruses in wildlife, including many potential threats to humans, is actually much deeper. A more systematic, multidisciplinary, and One Health framework is needed if we are to understand what drives and controls viral diversity and following that, what causes viruses to emerge as disease-causing pathogens."

EcoHealth Alliance scientists continue to work on the frontlines of viral discovery in emerging disease hotspots regions around the world focused at the intersection of the environment, health, and capacity building. EcoHealth Alliance is focused on understanding the environmental drivers of zoonotic disease emergence and promoting the conservation of all species.

"PREDICT has already discovered more than 240 novel viruses throughout the world in areas where people and animals live in close contact and depend on the same natural resources," says study co-author Jonna Mazet, PhD, director of the UC Davis One Health Institute and co-director of PREDICT. "That includes new coronaviruses, like the ones that cause SARS and the new Middle East Respiratory Syndrome."

The current study is the result of a multidisciplinary collaboration between 21 molecular virologists, ecologists, veterinarians, and mathematicians from institutions, including the Center for Infection and Immunity at Columbia's Mailman School; EcoHealth Alliance, National Autonomous University of Mexico, University of California Davis; International Centre for Diarrhoeal Disease Research, Dhaka (Bangladesh); Princeton University; National Institutes of Health; and Chittagong Veterinary and Animal Sciences University (Bangladesh).

"To quote Benjamin Franklin, an ounce of prevention is worth a pound of cure," says W. Ian Lipkin, MD, director of CII. "Our goal is to provide the viral intelligence needed for the global public health community to anticipate and respond to the continuous challenge of emerging infectious diseases." The study, titled "A strategy to estimate unknown viral diversity in mammals," appears in the journal mBio. Support for the research was provided by United States Agency for International Development (USAID) and the PREDICT Project.

About EcoHealth Alliance

Building on over 40 years of groundbreaking science, EcoHealth Alliance is a global, nonprofit organization dedicated to protecting wildlife and safeguarding human health from the emergence of disease. The organization develops ways to combat the effects of damaged ecosystems on human and wildlife health. Using environmental and health data covering the past 60 years, EcoHealth Alliance scientists created the first-ever, global disease hotspots map that identified at-risk regions, to help predict and prevent the next pandemic crisis. That work is the foundation of EcoHealth Alliance's rigorous, science-based approach, focused at the intersection of the environment, health, and capacity building. Working in the U.S. and more than 20 countries worldwide, EcoHealth Alliance's strength is founded on innovations in research, training, global partnerships, and policy initiatives. For more information, please visit http://www.ecohealthalliance.org.

Anthony M. Ramos | EurekAlert!
Further information:
http://www.ecohealthalliance.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>