Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research from CHORI Scientists Demonstrates First Genome Methylation in Fruit Fly

28.03.2014

Major Advance in DNA Methylation Research in Drosophila

A group of scientists from Children’s Hospital Oakland Research Institute and UC Berkeley report the first mapping of genome methylation in the fruit-fly Drosophila melanogaster in their paper “Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity,” published this month in Genome Research.

This paper represents a major advance in the study of DNA methylation in insects. No previous study has succeeded in pinpointing the location of DNA methylation in the fly genome. The common opinion in the field was that the fly does not have genomic methylation.

But Drs. Sachiko Takayama and Joseph Dhahbi, co-first authors who carried out the key work, and Drs. David Martin and Dario Boffelli, who led the project, found otherwise. The authors were able to detect genomic methylation in the fly by solving the main technical hurdle: fly methylation is relatively rare, and they developed a sensitive method that allowed them to detect it.

Why is this finding important? Methylation is a stable chemical modification of the genome; in humans and other vertebrates it participates in controlling when and where genes are on and off, but its functions in other organisms are not understood.

The finding suggests that genome methylation may have a hitherto uncharacterized function. While the authors still do not know what genome methylation does in the fly, they were able to find that the DNA sequence patterns that associate with methylation are very different from the patterns seen in humans, or in other animal or plant species to date.

Drosophila is one of the classic model organisms, with very well established tools to study its biology. The researchers’ description of methylation in the fly will facilitate the use of this powerful experimental system to study methylation.

Drosophila has only one known enzyme that could establish DNA methylation, and the researchers show that this enzyme is not responsible for the methylation patterns they detected. The fly genome has been studied very deeply, but the finding suggests that a new enzyme lies undiscovered within it.

The research team also included additional researchers from CHORI and UC Berkeley. For a link to the paper and its authors, please click here.

About Children’s Hospital & Research Center Oakland
Children’s Hospital & Research Center Oakland is a premier, not-for-profit medical center for children in Northern California, and is the only hospital in the East Bay 100% devoted to pediatrics. Children’s Oakland affiliated with UCSF Benioff Children’s Hospital on January 1, 2014. Children’s Oakland is a national leader in many pediatric specialties including hematology/oncology, neonatology, cardiology, orthopaedics, sports medicine, and neurosurgery. The hospital is one of only two solely designated California Level 1 pediatric trauma centers in the region, and has one of largest pediatric intensive care units in Northern California. Children’s Oakland has 190 licensed beds, over 500 physicians in 43 specialties, more than 2,600 employees, and a consolidated annual operating budget of more than $500 million. Children’s is also a leading teaching hospital with an outstanding pediatric residency program and a number of unique pediatric subspecialty fellowship programs.

Children’s research arm, Children’s Hospital Oakland Research Institute (CHORI), is internationally known for its basic and clinical research. CHORI is at the forefront of translating research into interventions for treating and preventing human diseases. CHORI has 250 members of its investigative staff, a budget of about $50 million, and is ranked among the nation’s top ten research centers for National Institutes of Health funding to children’s hospitals. For more information, go to www.childrenshospitaloakland.org and www.chori.org.

CONTACT: Melinda Krigel
Media Relations 
510-428-3069 office
510-388-5927 cell
mkrigel@mail.cho.org

Melinda Krigel | EurekAlert!
Further information:
http://www.childrenshospitaloakland.org/main/news/235.aspx

Further reports about: CHORI DNA Drosophila Genome enzyme fly genomic humans melanogaster methylation

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>