Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research expected to improve laser devices and make photovoltaics more efficient

17.11.2008
University of Chicago scientists have induced electrons in the nanocrystals of semiconductors to cool more slowly by forcing them into a smaller volume. This has the potential to improve satellite communications and the generation of solar power.

"Slowing down the cooling of these electrons—in this case, by more than 30 times—could lead to a better infrared laser source," said Philippe Guyot-Sionnest, Professor of Chemistry and Physics at the University of Chicago. "This, in turn, could be used to increase the bandwidth of communication satellites, allowing for faster connections."

Guyot-Sionnest is the principal investigator on the research project, which was described in a paper called "Slow Electron Cooling in Colloidal Quantum Dots," published Nov. 7 in Science.

The slow cooling of electrons in nanocrystals could lead to better, more efficient photovoltaic devices, he added. "This is because proposals to devise ways to extract the excess heat from these electrons as they cool are more likely to be realized—and to work—due to the fact that we now understand better what is going on with these nanocrystals."

Slower cooling of electrons in nanocrystals was first theorized in 1990, but no one has been able to observe this effect.

Slow electron cooling in nanocrystals occurs because forcing the electrons into a smaller volume leads them to oscillate between their alternate extremes within a very short period of time. (This is analogous to the way shorter strings on musical instruments produce higher pitches.) The electrons in the nanocrystals used in this experiment oscillated so fast that it became difficult for them to drag along the more sluggish vibrations of the nuclei. As a result, the energy stayed with the electrons for a longer period of time.

The slower cooling effect was difficult to induce and observe because several different mechanisms for energy loss interfered with the process. By eliminating these other mechanisms, the researchers were able to induce and observe slower electron cooling in nanocrystals.

Anshu Pandey, a graduate student in Chemistry at the University of Chicago, did the experiments described in the Science paper, which he co-authored.

Greg Borzo | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>