Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research expected to improve laser devices and make photovoltaics more efficient

17.11.2008
University of Chicago scientists have induced electrons in the nanocrystals of semiconductors to cool more slowly by forcing them into a smaller volume. This has the potential to improve satellite communications and the generation of solar power.

"Slowing down the cooling of these electrons—in this case, by more than 30 times—could lead to a better infrared laser source," said Philippe Guyot-Sionnest, Professor of Chemistry and Physics at the University of Chicago. "This, in turn, could be used to increase the bandwidth of communication satellites, allowing for faster connections."

Guyot-Sionnest is the principal investigator on the research project, which was described in a paper called "Slow Electron Cooling in Colloidal Quantum Dots," published Nov. 7 in Science.

The slow cooling of electrons in nanocrystals could lead to better, more efficient photovoltaic devices, he added. "This is because proposals to devise ways to extract the excess heat from these electrons as they cool are more likely to be realized—and to work—due to the fact that we now understand better what is going on with these nanocrystals."

Slower cooling of electrons in nanocrystals was first theorized in 1990, but no one has been able to observe this effect.

Slow electron cooling in nanocrystals occurs because forcing the electrons into a smaller volume leads them to oscillate between their alternate extremes within a very short period of time. (This is analogous to the way shorter strings on musical instruments produce higher pitches.) The electrons in the nanocrystals used in this experiment oscillated so fast that it became difficult for them to drag along the more sluggish vibrations of the nuclei. As a result, the energy stayed with the electrons for a longer period of time.

The slower cooling effect was difficult to induce and observe because several different mechanisms for energy loss interfered with the process. By eliminating these other mechanisms, the researchers were able to induce and observe slower electron cooling in nanocrystals.

Anshu Pandey, a graduate student in Chemistry at the University of Chicago, did the experiments described in the Science paper, which he co-authored.

Greg Borzo | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>