Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research to enhance speech recognition technology

17.01.2012
New research is hoping to understand how the human brain hears sound to help develop improved hearing aids and automatic speech recognition systems.

ed by the Universities of Southampton and Cambridge, the research aims to develop physiologically-inspired algorithms, which mimic how our brain hears sound to improve on traditional signal processing algorithms.

The novelty of the research is that instead of looking at signal energy - as today's artificial devices do - the researchers are concentrating on how the brain processes sound information instead.

Dr Stefan Bleeck, from the Institute of Sound and Vibration Research at the University of Southampton, is looking to create algorithms based on neuronal responses to give insights into how sound is coded within the brain. Once researchers know better how sound is coded, they will be able to select the parts that code speech and the ones that code unwanted noise. They will then be able to resynthesize sound in hearing aids with reduced noise, but with quality intact, to enhance speech intelligibility.

Today's speech enhancement systems can reduce noise and increase speech quality, but they are not good at improving speech intelligibility, especially in noisy situations where users have to concentrate to pick out single speakers. With about 10 per cent of the UK population hearing impaired, current signal processing technology hasn't come up with a suitable system to enhance speech intelligibility.

Dr Bleeck says: "Today, it is still the ultimate goal for the speech signal processing community to develop speech enhancement systems that perform as well as humans in noisy situations. Normal hearing humans still easily outperform any technical system - sound processing in the brain is more successful than signal processing in silicone. A system that works as well as a human would lead to the next revolution in human communication and would greatly benefit hearing impaired people.

"My vision is to build a brain-inspired speech enhancer in the next five years, which will be able to identify sound sources and to enhance speech intelligibility. This should be useful in everyday situations, for hearing impaired as well as normal hearing people, so that it ultimately reduces the stigma that hearing aids have today. Using this device in the future to hear better should be as normal as wearing glasses today to see better."

Dr Bleeck has received funding from a Google Research Award to undertake this research with ISVR colleague Dr Matthew Wright, and Dr Ian Winter of the University of Cambridge's Department of Physiology.

Notes for editors
1. A copy of the paper 'Speech enhancement in the neural space' is available from Media Relations on request.

2. The University of Southampton is a leading UK teaching and research institution with a global reputation for leading-edge research and scholarship across a wide range of subjects in engineering, science, social sciences, health and humanities.

With over 23,000 students, around 5,000 staff, and an annual turnover well in excess of £435 million, the University of Southampton is acknowledged as one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning.

The University is also home to a number of world-leading research centres including the Institute of Sound and Vibration Research, the Optoelectronics Research Centre, the Web Science Trust and Doctoral training Centre, the Centre for the Developmental Origins of Health and Disease, the Southampton Statistical Sciences Research Institute and is a partner of the National Oceanography Centre at the Southampton waterfront campus.

For further information contact:

Glenn Harris, Media Relations, University of Southampton, Tel: 023 8059 3212, email: G.Harris@soton.ac.uk

Glenn Harris | alfa
Further information:
http://www.soton.ac.uk/mediacentre/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>