Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research demonstrates the influence of temporal niches in maintaining biodiversity

09.07.2013
By studying rapidly evolving bacteria as they diversify and compete under varying environmental conditions, researchers have shown that temporal niches are important to maintaining biodiversity in natural systems. The research is believed to be the first experimental demonstration of temporal niche dynamics promoting biodiversity over evolutionary time scales.

The temporal niches – changes in environmental conditions that occur during specific periods of time – promoted frequency-dependent selection within the bacterial communities and positive growth of new mutants. They played a vital role in allowing diversity among bacterial phenotypes to persist.

The research provides new insights into the factors that promote species coexistence and diversity in natural systems. Understanding the mechanisms governing the origin and maintenance of biodiversity is important to scientists studying the roles of both ecology and evolution in natural systems.

"This study provides the first experimental evidence showing the impact of temporal niche dynamics on biodiversity evolution," said Lin Jiang, co-author of the paper and an associate professor in the School of Biology at the Georgia Institute of Technology. "Our laboratory results in bacteria can potentially explain the diversity dynamics that have been observed for other organisms over evolutionary time."

The research, which was supported by the National Science Foundation, was scheduled to be published July 9 in the journal Nature Communications.

In experimental manipulation of the bacterium Pseudomonas fluorescens, the researchers showed that alternating environmental conditions in 24-hour cycles strongly influences biodiversity dynamics by helping to maintain closely-related phenotypes that might otherwise be lost to competition with a dominant phenotype. The experiment followed the bacteria through more than 200 generations over a period of nearly two weeks.

In the laboratory, Jiang and graduate student Jiaqi Tan established communities of the bacterium in test tubes called microcosms. In designing the experiments, they collaborated with Colleen Kelly, a senior research associate in the Department of Zoology at the University of Oxford.

"You begin with one phenotype, and within two days, you might have two or three different phenotypes," said Jiang. "The system can do this in a matter of days."

Through a 12-day experimental period, the researchers subjected one group of cultures to 24-hour periods in which they were alternately allowed to grow undisturbed and shaken vigorously. To control for the impact of starting conditions, cultures within those two groups were chosen to begin with a period of static growth, while others began with a period of shaken growth. Finally, groups of control cultures were grown under continuous shaking or continuous static conditions.

During the study, the researchers periodically measured the population sizes of each phenotype present in each culture. Cultures subjected to alternating shaking and static conditions produced the highest level of diversity among the closely-related bacteria, which is often studied because it diversifies so rapidly.

"Static conditions promoted diversification," Jiang explained. "But the shaking tended to maintain the diversity that had evolved. Both conditions were essential for high biodiversity."

In experiments, the ancestral bacterial phenotype, which is known as "smooth morph," quickly diversifies and generates two niche-specialists, known as "wrinkled spreader" and "fuzzy spreader." Those, in turn, diversify into additional phenotypes. Competition for oxygen in the microcosms in which the bacteria grow is believed to drive the diversification; shaking the microcosms changes the levels of oxygen available to each phenotype. Because different phenotype groups inhabit different sections of the container, the shaking eliminated the preferred niches of some phenotypes.

The diversification in the microcosms experiencing constant shaking was much slower than in static microcosms. In microcosms experiencing temporal niche dynamics – the alternating shaking and non-shaking periods – the diversity increased rapidly and was maintained longer than in the other environments. The researchers found that the two different temporal niche dynamics environments – which differed only in their starting conditions – both produced richer biodiversity than those environments without it.

While the diversification occurred rapidly over a period of four days, the decline in the number of phenotypes due to natural competition took longer. Some of the phenotypes were ultimately excluded through the competitive processes.

"Diversity typically increases with time, then plateaus," said Jiang. "Without temporal niche, diversity tends to decline. Temporal niche allows a greater diversity to be maintained over time than would be possible otherwise."

Though the study focused on rapidly diversifying bacteria, the researchers believe it may have broader implications. The general theory of temporal niche dynamics was developed with more complex organisms, such as plants and corals, in mind.

"The mechanisms that promote biodiversity, which we call frequency-dependent selection, are very common in species," said Tan. "As long as you have a strong intra-species competition within the populations, you are expected to see this frequency-dependent selection. Based on this most common mechanism that we find in this system, there are implications for other ecosystems."

For the future, the researchers would like to study the effects of combining spatial and temporal niches in evolution.

"From this experiment, we know that temporal niche can maintain biodiversity," said Tan. "Similarly, we want to manipulate spatial diversity to see if heterogeneity in the spatial scale can affect the maintenance of biodiversity."

This research was supported by the National Science Foundation under grants DEB-1120281 and DEB-1257858. Any opinions expressed are those of the authors and do not necessarily represent the official views of the National Science Foundation.

CITATION: Jiaqi Tan, Colleen K. Kelly and Lin Jiang, "Temporal niche promotes biodiversity during adaptive radiation," (Nature Communications, 2013). http://dx.doi.org/10.1038/ncomms3102

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>