Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research demonstrates the influence of temporal niches in maintaining biodiversity

09.07.2013
By studying rapidly evolving bacteria as they diversify and compete under varying environmental conditions, researchers have shown that temporal niches are important to maintaining biodiversity in natural systems. The research is believed to be the first experimental demonstration of temporal niche dynamics promoting biodiversity over evolutionary time scales.

The temporal niches – changes in environmental conditions that occur during specific periods of time – promoted frequency-dependent selection within the bacterial communities and positive growth of new mutants. They played a vital role in allowing diversity among bacterial phenotypes to persist.

The research provides new insights into the factors that promote species coexistence and diversity in natural systems. Understanding the mechanisms governing the origin and maintenance of biodiversity is important to scientists studying the roles of both ecology and evolution in natural systems.

"This study provides the first experimental evidence showing the impact of temporal niche dynamics on biodiversity evolution," said Lin Jiang, co-author of the paper and an associate professor in the School of Biology at the Georgia Institute of Technology. "Our laboratory results in bacteria can potentially explain the diversity dynamics that have been observed for other organisms over evolutionary time."

The research, which was supported by the National Science Foundation, was scheduled to be published July 9 in the journal Nature Communications.

In experimental manipulation of the bacterium Pseudomonas fluorescens, the researchers showed that alternating environmental conditions in 24-hour cycles strongly influences biodiversity dynamics by helping to maintain closely-related phenotypes that might otherwise be lost to competition with a dominant phenotype. The experiment followed the bacteria through more than 200 generations over a period of nearly two weeks.

In the laboratory, Jiang and graduate student Jiaqi Tan established communities of the bacterium in test tubes called microcosms. In designing the experiments, they collaborated with Colleen Kelly, a senior research associate in the Department of Zoology at the University of Oxford.

"You begin with one phenotype, and within two days, you might have two or three different phenotypes," said Jiang. "The system can do this in a matter of days."

Through a 12-day experimental period, the researchers subjected one group of cultures to 24-hour periods in which they were alternately allowed to grow undisturbed and shaken vigorously. To control for the impact of starting conditions, cultures within those two groups were chosen to begin with a period of static growth, while others began with a period of shaken growth. Finally, groups of control cultures were grown under continuous shaking or continuous static conditions.

During the study, the researchers periodically measured the population sizes of each phenotype present in each culture. Cultures subjected to alternating shaking and static conditions produced the highest level of diversity among the closely-related bacteria, which is often studied because it diversifies so rapidly.

"Static conditions promoted diversification," Jiang explained. "But the shaking tended to maintain the diversity that had evolved. Both conditions were essential for high biodiversity."

In experiments, the ancestral bacterial phenotype, which is known as "smooth morph," quickly diversifies and generates two niche-specialists, known as "wrinkled spreader" and "fuzzy spreader." Those, in turn, diversify into additional phenotypes. Competition for oxygen in the microcosms in which the bacteria grow is believed to drive the diversification; shaking the microcosms changes the levels of oxygen available to each phenotype. Because different phenotype groups inhabit different sections of the container, the shaking eliminated the preferred niches of some phenotypes.

The diversification in the microcosms experiencing constant shaking was much slower than in static microcosms. In microcosms experiencing temporal niche dynamics – the alternating shaking and non-shaking periods – the diversity increased rapidly and was maintained longer than in the other environments. The researchers found that the two different temporal niche dynamics environments – which differed only in their starting conditions – both produced richer biodiversity than those environments without it.

While the diversification occurred rapidly over a period of four days, the decline in the number of phenotypes due to natural competition took longer. Some of the phenotypes were ultimately excluded through the competitive processes.

"Diversity typically increases with time, then plateaus," said Jiang. "Without temporal niche, diversity tends to decline. Temporal niche allows a greater diversity to be maintained over time than would be possible otherwise."

Though the study focused on rapidly diversifying bacteria, the researchers believe it may have broader implications. The general theory of temporal niche dynamics was developed with more complex organisms, such as plants and corals, in mind.

"The mechanisms that promote biodiversity, which we call frequency-dependent selection, are very common in species," said Tan. "As long as you have a strong intra-species competition within the populations, you are expected to see this frequency-dependent selection. Based on this most common mechanism that we find in this system, there are implications for other ecosystems."

For the future, the researchers would like to study the effects of combining spatial and temporal niches in evolution.

"From this experiment, we know that temporal niche can maintain biodiversity," said Tan. "Similarly, we want to manipulate spatial diversity to see if heterogeneity in the spatial scale can affect the maintenance of biodiversity."

This research was supported by the National Science Foundation under grants DEB-1120281 and DEB-1257858. Any opinions expressed are those of the authors and do not necessarily represent the official views of the National Science Foundation.

CITATION: Jiaqi Tan, Colleen K. Kelly and Lin Jiang, "Temporal niche promotes biodiversity during adaptive radiation," (Nature Communications, 2013). http://dx.doi.org/10.1038/ncomms3102

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>