Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Indicates That Adult Human Mesenchymal Stem Cells May be Viable Treatment for Spinal Cord Injury Repair

07.10.2011
Research from the University of Medicine and Dentistry of New Jersey, published online ahead of print in Stem Cells and Development, shows that adult human mesenchymal stem cells may have an important role in the treatment and repair of spinal cord injuries.

Mesenchymal stem cells (MSCs) are found mainly in the bone marrow and are the focus of many clinical trials that investigate potential methods of neurological repair and other regenerative applications.

“Although mesenchymal stem cells are widely known to be used in replacing damaged tissue, these stem cells may also recruit endogenous cells (those made within the body) to help accelerate the repair process,” said Hatem E. Sabaawy, MD, PhD, assistant professor of medicine at UMDNJ-Robert Wood Johnson Medical School and a senior author of the study. “The immune suppressive properties of mesenchymal stem cells suppress the inflammatory process during injury repair.”

For the first time, researchers at UMDNJ examined the use of human MSCs to prompt repair of spinal cord injuries in transgenic (genetically engineered or altered) zebrafish embryos. Zebrafish are especially valuable to researchers due to invertebrate characteristics that are similar to those of humans, the transparency of their bodies and their ability to initiate regeneration of damaged tissue. The study demonstrates that human MSCs affix to the injury site and influence spinal cord cells to accelerate the repair process.

“Our results indicate that MSC therapy not only augments recovery after spinal cord injury, but also accelerates the recovery time,” said Pranela Rameshwar, PhD, a senior author and professor of medicine at UMDNJ-New Jersey Medical School.

The research was supported by grants from the FM Kirby Foundation, the Foundation of UMDNJ and The Cancer Institute of New Jersey, a Center of Excellence of UMDNJ-Robert Wood Johnson Medical School.

About UMDNJ-ROBERT WOOD JOHNSON MEDICAL SCHOOL
As one of the nation’s leading comprehensive medical schools, UMDNJ-Robert Wood Johnson Medical School is dedicated to the pursuit of excellence in education, research, health care delivery, and the promotion of community health. In cooperation with Robert Wood Johnson University Hospital, the medical school’s principal affiliate, they comprise New Jersey’s premier academic medical center. In addition, Robert Wood Johnson Medical School has 34 other hospital affiliates and ambulatory care sites throughout the region.

As one of the eight schools of the University of Medicine and Dentistry of New Jersey with 2,800 full-time and volunteer faculty, Robert Wood Johnson Medical School encompasses 22 basic science and clinical departments, hosts centers and institutes including The Cancer Institute of New Jersey, the Child Health Institute of New Jersey, the Center for Advanced Biotechnology and Medicine, the Environmental and Occupational Health Sciences Institute, and the Stem Cell Institute of New Jersey. The medical school maintains educational programs at the undergraduate, graduate and postgraduate levels for more than 1,500 students on its campuses in New Brunswick, Piscataway, and Camden, and provides continuing education courses for health care professionals and community education programs. To learn more about UMDNJ-Robert Wood Johnson Medical School, log on to rwjms.umdnj.edu. Find us online at www.Facebook.com/RWJMS and www.twitter.com/UMDNJ_RWJMS.

Jennifer Forbes | New
Further information:
http://www.umdnj.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>