Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rescuing Fruit Flies from Alzheimer’s Disease

16.07.2010
Penn Researchers Reverse Cognitive Decline in Flies With Alzheimer’s Gene Mutation

Investigators have found that fruit fly (Drosophila melanogaster) males -- in which the activity of an Alzheimer’s disease protein is reduced by 50 percent -- show impairments in learning and memory as they age. What’s more, the researchers were able to prevent the age-related deficits by treating the flies with drugs such as lithium, or by genetic manipulations that reduced nerve-cell signaling.

The research team -- Thomas A. Jongens, Ph.D., associate professor of Genetics at the University of Pennsylvania School of Medicine; Sean M. J. McBride M.D, Ph.D. and Thomas McDonald M.D., at the Albert Einstein College of Medicine; and Catherine Choi M.D., Ph.D. at Drexel University College of Medicine – worked with the familial form of Alzheimer’s disease (FAD), an aggressive form of the disease that is caused by mutations in one of the two copies of the presenilin (PS) or amyloid precursor protein (APP) genes. Studies in animal models have previously shown that the FAD-linked PS mutations lead to less presenilin (psn) protein activity.

Their findings are published in this week’s issue of the Journal of Neuroscience.

“The results from our study suggest a new route to explore for the treatment of familial Alzheimer’s disease and possibly the more common sporadic forms of Alzheimer’s disease,” notes Jongens. “They also reveal that proper presenilin activity levels are required to maintain normal cognitive capabilities during aging.”

Learning and Memory Tests in Flies

Fruit flies can hardly take a pen-and-pencil test to assess age-related memory decline. Instead, the team relied on the ability to train fruit fly males to learn and remember courtship behavior.

During courtship the male fly performs an instinctive set of behaviors to both determine if the female is receptive and to entice her to mate. The courtship activity that a male displays toward a female is affected by several factors, including the type of pheromones produced by the female, as well as her response to his courtship attempts. If the female is not receptive she releases less attractive pheromones and more aggressively discourages the male to court her. Under these conditions, the male will quickly learn to not court her as well as other females and will remember this for several hours.

The researchers found that with age, the presenilin mutant – the Alzheimer’s fruit fly model -- lost the ability to learn and remember and that this age-onset cognitive deficit could be prevented by treating the flies with drugs, or by genetic manipulations that reduce metabotropic glutamate receptor (mGluR) signaling. MGluR is located on the surface of neurons, including in the hippocampus – a major memory and learning center in the brain.

In addition, treatment of older flies with these same drugs reversed the age-dependent deficits.

"A clear advantage of the drugs used in this study is that one, lithium, is currently FDA approved for other indications and the other class of drugs, the mGluR antagonists, are currently in clinical trials in humans for the treatment of Fragile X syndrome,” comments Choi .

"We demonstrate that these treatments, even when begun after the onset of cognitive impairment, can reverse memory deficits,” says McBride. “This indicates that there is a window of time during which memory is impaired, but the cellular function can still be rescued with proper treatment, again allowing for the ability to form proper memory. This is a critical finding since in humans Alzheimer’s is diagnosed only clinically after the onset of cognitive impairment. So, this finding may indicate that even at the point of early memory impairment, the disease may be reversible.”

Relation to Fragile X Syndrome

In attempts to identify related pathways affected by a reduction in presenilin activity, the team performed genetic tests with genes known to affect cognition. They found that the presenilin mutation genetically interacts with the Fragile X mutation in fruit flies. Fragile X is the most common genetically inherited form of cognitive impairment in humans and a known cause of autism that affects about 1 in 4,000 individuals worldwide.

"We were shocked that the two genes work in what appears to be the same pathway,” says Jongens. The outward characteristics of the Fragile X fly model are loss of courtship activity and memory. In earlier studies, the same research team had found that lithium and mGluR antagonists also restored normal courting behavior and memory in Fragile X flies. This is what led Jongens and his colleagues to test lithium and mGluR antagonists on the FAD-mutated fruit flies.

Eight years ago, studies outside of Penn using a mouse model proposed that Fragile X patients have a tendency to have weakened synaptic connections (sites used for neuron to neuron communication) more readily than the general population. This weakening is due to increased activity in the mGluR. In turn, this increased activity compromises neurotransmission for memory-associated functions.

These results led to the “The mGluR Theory of Fragile X,” first proposed by Dr. Mark Bear at MIT and his coauthors. This theory proposed that the underlying cause of the cognitive impairment and many of the other symptoms associated with Fragile X Syndrome were due to enhanced metabotropic glutamate receptor signaling.

Jongens, McBride, and colleagues tested if mGluR overactivity might be at the root of many of phenotypes associated with their fly Fragile X model. In 2005, the team reported that treatment of fragile X flies with drugs such as lithium or mGluR antagonists restored normal courtship behavior and memory in their mutant flies and rescued some neuronal structural defects, as well. The group used lithium because it is known to have activities analogous to blocking mGluR-receptor activity, and it is already an FDA-approved drug used to treat other ailments in humans such as bipolar disorder.

A Potential Link to Calcium

Back in the Alzheimer’s fly model, the team surmised that if they could rescue mutated flies with lithium or mGluR antagonists, that pathways downstream of mGluR might also be useful targets for rescuing age-related cognitive impairments. One pathway they investigated was the regulation of the inositol trisphosphate receptor (InsP3R), which releases calcium from internal stores into the cytoplasm of the cell.

They focused on this pathway because previous studies have found elevated calcium levels in the cells of Alzheimer’s patients and more recently Dr. Kevin Foskett and his colleagues, also at Penn, had found that FAD mutations of presenilin make InsP3R more responsive to the signal that stimulates it to release calcium in the cytoplasm. (In normal situations, presenilin functions to cleave several transmembrane proteins, including the APP protein, which can produce the Ab-peptide found in the plaques of Alzheimer’s patients.)

Jongens, McBride and their colleagues found that genetic reduction of the InsP3R pathway also prevented the age-related loss of learning and memory in the FAD fly model.

"The release of calcium from internal cellular stores during the cellular encoding of memory seems to be finely tuned so that either too much or too little calcium release could impair memory formation,” notes McBride.

“Our next steps will involve validating results in a relevant mouse model of FAD or AD, as well as exploring the underlying basis for this new found connection between Fragile X Syndrome and Alzheimer’s disease,” says Jongens. “It is intriguing that the drugs being developed for the treatment of Fragile X might also be useful in the treatment of another disease affecting cognition, namely Alzheimer’s disease.”

This work was supported by the FRAXA Research Foundation, the National Institutes of

Health (NIH), the American Health Assistance Foundation as well as Autism Speaks and The National Fragile X Foundation.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.

Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>