Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reprogramming stem cells to a more basic form results in more effective transplant, study shows

Chinese stem cell scientists have published new research that improves the survival and effectiveness of transplanted stem cells. The research led by Dr Hsiao Chang Chan, from the Chinese University of Hong Kong, is published in Stem Cells.

Research into differentiation has led to a variety of breakthroughs as stem cell researchers harvest cells from one part of the body and genetically adapt them to fulfill a specialized role. However, if the implanted cells are too much like the cells of the targeted area they may not have the plasticity to engraft and repair the injured tissue.

"Stem cell differentiation and transplantation has been shown to improve function in conditions including degenerative diseases and blood supply disorders," said Dr Chan. "However, the survival rate of transplanted cells in patients limits their overall effectiveness, which is a barrier to clinical use."

To overcome this issue Dr Chan's team explored de-differentiation, a process that reverts specialized, differentiated cells back to a more primitive cell.

The team focused their research on multipotent stem cells, (MSCs) which can be altered into a variety of cell types through differentiation. Bone marrow MSCs have the potential to differentiate into each of the three basic types of lineage cells which form bone (osteocytes), cartilage (chondrocytes) and fat tissue (adipocytes).

The team first differentiated bone marrow MSCs towards a neuronal lineage, but then removed the differentiation conditions, allowing the cell to revert back to a form with more basic cellular characteristics.

Following this process the team recorded increased cell survival rates following transplants. In an animal model de-differentiated cells were found to be more effective in improving cognitive functions and in aiding recovery from strokes, compared to un-manipulated stem cells both in living specimens and in laboratory experiments.

The results confirm that de-differentiation is a workable technique for reengineering cells to an earlier, more primitive state but reprogrammed to have increased cell survival rates and therefore their potential for clinical use.

"The finding that MSCs can be reprogrammed to have enhanced survival and therapeutic efficacy in an animal model with potential application to patients is extremely exciting as it may provide a novel and clinically practical method to overcome low cell survival in cell-based therapy," concluded Dr Chan. "We are currently exploring other beneficial properties of the reprogrammed MSCs for other therapeutic applications."

"Many investigators have speculated that differentiation should improve the utility of stem cells for transplantation, but how far to differentiate the cells for the best outcome is a difficult question. Dr Chan's team have helped provide an answer by educating mesenchymal stem cells by pre-differentiating to the desired lineage before de-differentiation, making MSCs easier to manipulate and implant," said Dr Mark Pittenger, Stem Cells Associate Editor.

"Interesting questions still remain for future work such as which factors are expressed in the pre-differentiated stem cells that persist upon de-differentiation and can the de-differentiated cells be frozen for future use?"

Ben Norman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>