Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reprogramming cell identity in the pituitary gland

A discovery by IRCM researchers could lead to new treatments for Cushing’s disease

A team of researchers at the IRCM, supervised by Dr. Jacques Drouin, reprogrammed the identity of cells in the pituitary gland and identified critical mechanisms of epigenetic cell programming. This important discovery, published today by the scientific journal Genes & Development, could eventually lead to new pharmacological targets for the treatment of Cushing’s disease.

Dr. Drouin’s team studies the pituitary gland, which is the master gland located at the base of the skull that secretes hormones to control all other glands of the endocrine system. Disruption of pituitary functions has dire consequences on growth, reproduction and metabolism.

Within the pituitary gland, each hormone is produced by cells of a different lineage. Unique cell identities are created by cell-specific genetic programs that are implemented during development. Appropriate cell programming is a critical process that needs to be harnessed in order to exploit the therapeutic benefits of stem cell research.

In their work, the IRCM researchers showed that the transcription factor Pax7 has pioneering abilities, meaning that it is able to open the tightly-packed chromatin structure of specific regions of the genome. This unmasking of a subset of the genome’s regulatory sequences changes the genome’s response to differentiation signals such that different cell types are generated.

“We reprogrammed the identity of pituitary cells by using the Pax7 gene in order to create two different types of cells,” says Lionel Budry, former student in Dr. Drouin’s laboratory and first author of the article. “This allowed us to show that the Tpit protein produces different cell lineages according to the presence or absence of Pax7, and its impact on chromatin organisation.”

Cushing’s disease is caused by small tumours of the pituitary gland that produce excessive amounts of hormones. For patients with this disease, the abnormal hormone production can lead to hypertension, obesity, diabetes and osteoporosis.

“For approximately 10% of patients suffering from Cushing’s disease, we found that the disease-causing tumours contain cells that express the Pax7 protein,” explains Dr. Drouin, Director of the Molecular Genetics research unit at the IRCM. “No effective pharmacological treatment currently exists for Cushing’s disease. This discovery could ultimately lead to the development of such treatment, based on tumour growth inhibition by hormones, similarly to what is already done for other pituitary tumours like lactotrope adenomas.”

About the research project
This research project was funded by the Canadian Institutes for Health Research (CIHR) and the Canadian Cancer Society Research Institute. Contributors from Jacques Drouin’s laboratory also include Aurélio Balsalobre, Yves Gauthier, Konstantin Khetchoumian, Aurore L’Honoré and Sophie Vallette. In addition, IRCM scientists worked in collaboration with researchers from the Université de la Méditerranée and Hopital La Timone, Marseille in France and Utrecht University in the Netherlands.

For more information on this discovery, please refer to the article summary published online by Genes & Development.

About Dr. Jacques Drouin
Jacques Drouin obtained his Doctor of Science in Physiology from te Université Laval. He is IRCM Research Professor and Director of the Molecular Genetics research unit. Dr. Drouin is a professor in the Department of Biochemistry at the Université de Montréal. He is also associate member of the Department of Medicine (Division of Experimental Medicine), adjunct professor of the Department of Anatomy and Cell Biology, and adjunct member of the Department of Biochemistry at McGill University. In addition, he is an elected member of the Academy of Sciences of the Royal Society of Canada. For more information, visit
About the Institut de recherches cliniques de Montréal (IRCM)
Founded in 1967, the IRCM ( is currently comprised of 37 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, eight core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l’Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

For more information and to schedule an interview with Dr. Drouin, please contact:

Julie Langelier
Communications Officer (IRCM)
(514) 987-5555
Lucette Thériault
Communications Director (IRCM)
(514) 987-5535

Julie Langelier | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht The gene of autumn colours
27.10.2016 | Hokkaido University

nachricht Polymer scaffolds build a better pill to swallow
27.10.2016 | The Agency for Science, Technology and Research (A*STAR)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>