Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reproductive scientists create mice from 2 fathers

09.12.2010
Using stem cell technology, reproductive scientists in Texas, led by Dr. Richard R. Berhringer at the M.D. Anderson Cancer Center, have produced male and female mice from two fathers.

The study was posted today (Wednesday, December 8) at the online site of the journal Biology of Reproduction.

The achievement of two-father offspring in a species of mammal could be a step toward preserving endangered species, improving livestock breeds, and advancing human assisted reproductive technology (ART). It also opens the provocative possibility of same-sex couples having their own genetic children, the researchers note.

In the work reported today, the Behringer team manipulated fibroblasts from a male (XY) mouse fetus to produce an induced pluripotent stem (iPS) cell line. About one percent of iPS cell colonies grown from this XY cell line spontaneously lost the Y chromosome, resulting in XO cells. The XO iPS cells were injected into blastocysts from donor female mice. The treated blastocysts were transplanted into surrogate mothers, which gave birth to female XO/XX chimeras having one X chromosome from the original male mouse fibroblast.

The female chimeras, carrying oocytes derived from the XO cells, were mated with normal male mice. Some of the offspring were male and female mice that had genetic contributions from two fathers.

According to the authors, "Our study exploits iPS cell technologies to combine the alleles from two males to generate male and female progeny, i.e. a new form of mammalian reproduction."

The technique described in this study could be applied to agriculturally important animal species to combine desirable genetic traits from two males without having to outcross to females with diverse traits.

"It is also possible that one male could produce both oocytes and sperm for self-fertilization to generate male and female progeny," the scientists point out. Such a technique could be valuable for preserving species when no females remain.

In the future, it may also be possible to generate human oocytes from male iPS cells in vitro. Used in conjunction with in vitro fertilization, this would eliminate the need for female XO/XX chimeras, although a surrogate mother would still be needed to carry the two-father pregnancy to term.

Using a variation of the iPS technique, the researchers say "it may also be possible to generate sperm from a female donor and produce viable male and female progeny with two mothers."

The authors also caution that the "generation of human iPS cells still requires significant refinements prior to their use for therapeutic purposes."

Dr. Richard R. Behringer | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>