Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First report on fate of underwater dispersants in Deepwater Horizon oil spill

27.01.2011
Scientists are reporting that key chemical components of the 770,000 gallons of oil dispersants applied below the ocean surface in the Deepwater Horizon spill did mix with oil and gas spewing out of the damaged wellhead and remained in the deep ocean for two months or more without degrading.

However, it was not possible to determine if the first deep ocean use of oil dispersants worked as planned in breaking up and dissipating the oil. Their study, the first peer-reviewed research published on the fate of oil dispersants added to underwater ocean environments, appears in ACS' journal Environmental Science & Technology.

Elizabeth Kujawinski and colleagues note ongoing concern about the environmental fate of the 1.4 million gallons of dispersant applied to the ocean surface and the 770,000 gallons of dispersant pumped to the mile-deep well head during the oil spill in the Gulf of Mexico. Many studies show that dispersants added to surface oil spills prevent them from coating and harming sensitive coastal environments, but no large-scale applications of dispersants in deep water had been conducted until the Deepwater Horizon oil spill. Thus, no data exists on the environmental fate of dispersants in deep water, the scientists say.

The scientists collected and analyzed seawater samples from the Gulf of Mexico for the presence of a key dispersant ingredient, called DOSS (dioctyl sodium sulfosuccinate), during the active oil flow and again after the flow had ceased. They found DOSS became concentrated in the deepwater plumes of suspended oil and gas at depths of up to three-quarters of a mile and did not mix with the surface applications of dispersant. They also detected the dispersant ingredient at distances of nearly 200 miles from the well two months after deepwater dispersant applications ceased, indicating it was not rapidly biodegraded. Their data is not sufficient to resolve whether the dispersant was effective in dispersing the oil coming out of the wellhead. However, the scientists argue that the persistence of the dispersant over long distances and time periods justifies further study of the effects of chemical dispersant and oil mixture exposure.

The authors acknowledge funding from the National Science Foundation, the Gordon and Betty Moore Foundation and from the Woods Hole Oceanographic Institution.

ARTICLE FOR IMMEDIATE RELEASE
"Fate of Dispersants Associated with the Deepwater Horizon Oil Spill"
Full Text available from: m_bernstein@acs.org
CONTACT:
Woods Hole Oceanographic Institution
News Media Office
508-289-3340

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>