Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First report on fate of underwater dispersants in Deepwater Horizon oil spill

Scientists are reporting that key chemical components of the 770,000 gallons of oil dispersants applied below the ocean surface in the Deepwater Horizon spill did mix with oil and gas spewing out of the damaged wellhead and remained in the deep ocean for two months or more without degrading.

However, it was not possible to determine if the first deep ocean use of oil dispersants worked as planned in breaking up and dissipating the oil. Their study, the first peer-reviewed research published on the fate of oil dispersants added to underwater ocean environments, appears in ACS' journal Environmental Science & Technology.

Elizabeth Kujawinski and colleagues note ongoing concern about the environmental fate of the 1.4 million gallons of dispersant applied to the ocean surface and the 770,000 gallons of dispersant pumped to the mile-deep well head during the oil spill in the Gulf of Mexico. Many studies show that dispersants added to surface oil spills prevent them from coating and harming sensitive coastal environments, but no large-scale applications of dispersants in deep water had been conducted until the Deepwater Horizon oil spill. Thus, no data exists on the environmental fate of dispersants in deep water, the scientists say.

The scientists collected and analyzed seawater samples from the Gulf of Mexico for the presence of a key dispersant ingredient, called DOSS (dioctyl sodium sulfosuccinate), during the active oil flow and again after the flow had ceased. They found DOSS became concentrated in the deepwater plumes of suspended oil and gas at depths of up to three-quarters of a mile and did not mix with the surface applications of dispersant. They also detected the dispersant ingredient at distances of nearly 200 miles from the well two months after deepwater dispersant applications ceased, indicating it was not rapidly biodegraded. Their data is not sufficient to resolve whether the dispersant was effective in dispersing the oil coming out of the wellhead. However, the scientists argue that the persistence of the dispersant over long distances and time periods justifies further study of the effects of chemical dispersant and oil mixture exposure.

The authors acknowledge funding from the National Science Foundation, the Gordon and Betty Moore Foundation and from the Woods Hole Oceanographic Institution.

"Fate of Dispersants Associated with the Deepwater Horizon Oil Spill"
Full Text available from:
Woods Hole Oceanographic Institution
News Media Office

Michael Bernstein | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>