Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT sorts cells with beams of light

12.12.2007
Could find applications in genetic screening, more

Separating out particular kinds of cells from a sample could become faster, cheaper and easier thanks to a new system developed by MIT researchers that involves levitating the cells with light.

The system, which can sort up to 10,000 cells on a conventional glass microscope slide, could enable a variety of biological research projects that might not have been feasible before, its inventors say. It could also find applications in clinical testing and diagnosis, genetic screening and cloning research, all of which require the selection of cells with particular characteristics for further testing.

Joel Voldman, an associate professor in MIT’s Department of Electrical Engineering and Computer Science, and Joseph Kovac, a student in the department, developed the new system, which is featured as the cover story in the Dec. 15 issue of the journal Analytical Chemistry.

... more about:
»LIGHT »Testing »Voldman »particular

Present methods allow cells to be sorted based on whether or not they emit fluorescent light when mixed with a marker that responds to a particular protein or other compound. The new system allows more precise sorting, separating out cells based not just on the overall average fluorescent response of the whole cell but on responses that occur in specific parts of the cell, such as the nucleus. The system can also pick up responses that vary in how fast they begin or how long they last.

“We’ve been interested in looking at things inside the cell that either change over time, or are in specific places,” Voldman says. Separating out cells with such characteristics “can’t be done with traditional cell sorting.”

For example, if cells differ in how quickly they respond to a particular compound used in the fluorescent labeling, the new system would make it possible to “select out the ones that are faster or slower, and see what’s different,” says Voldman, who also has appointments in MIT’s Research Laboratory of Electronics and the Microsystems Technology Laboratories.

“It seems like that should be easy, but it isn’t,” he said. There are other ways of accomplishing the same kind of cell separation, but they require complex and expensive equipment, or are limited in the number of cells they can process.

The new system uses a simple transparent silicone layer bonded to a conventional glass microscope slide. Fabricated in the layer are a series of tiny cavities, or traps, in which cells settle out after being added to the slide in a solution. Up to 10,000 cells could be sorted on a single slide.

Looking through the microscope, either a technician or a computerized system can check each cell to determine whether it has fluorescence in the right area or at the right time to meet the selection criteria. If so, its position is noted by the computer. At the end of the selection process, all of the cells whose positions were recorded are then levitated out of their traps using the pressure of a beam of targeted light from a low-cost laser. A flowing fluid then sweeps the selected cells off to a separate reservoir.

The laser levitation of the cells acts like “a fire hose pushing up a beach ball,” Voldman says. But the laser method is gentle enough that the living cells remain viable after the process is complete, allowing further biological testing.

Voldman and Kovac are continuing to refine the system, working on making it easier to use and on improving its ability to keep samples sterile. Voldman says that unlike expensive separation techniques such as optical tweezers, the new system could cost only a few thousand dollars. As a result, it could be employed in a variety of biological research laboratories or clinical settings, not just in big, centralized testing facilities.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: LIGHT Testing Voldman particular

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>