Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers build new model of bio-exploration in central Asia

12.12.2007
Two land-grant universities have developed a new approach to global bio-exploration, one that returns most of the fruits of discovery to the countries that provide the raw materials on which the research depends.

The Global Institute for Bio-Exploration, a joint initiative of the University of Illinois and Rutgers University, has become a model of sustainable, non-exploitive research in the developing world.

The program began in 2003 when research teams from the two universities joined forces to work in several former Soviet Union republics under an International Cooperative Biodiversity Groups program funded with $4 million grant from the National Institutes of Health. Based on lessons learned in Central Asia, the researchers built on this model to create the institute, which is now expanding into Africa and South America.

The institute builds relationships with and trains those in developing countries to prospect for plants that have interesting biological properties, said U. of I. natural resources and environmental sciences professor Mary Ann Lila, a co-founder of the institute.

... more about:
»Build »compound »developing »properties »technique

“Rather than the typical bio-prospecting approach, where people take plants back to their labs in Western Europe or the U.S., we teach locals to conduct simple assays in the field,” Lila said. When field results identify plants with potentially useful properties, the researchers do follow-up studies in the laboratory.

“But when a discovery is made in the field with a local, the intellectual property rights stay there,” Lila said. The country is required to use any money it receives from licensing fees or royalties to develop its own research infrastructure and protect wild lands.

Pharmaceutical companies already have shown interest.

So far, the institute – also known by the acronym GIBEX – has generated 17 licensing agreements, a dozen of them from Central Asian leads, with companies hoping to make use of plants that have medical or cosmetic potential.

The program began in the former Soviet republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Horticulturalists are drawn to the “Stans,” Lila said, because the region has a rich heritage as a center of fruit and nut production, and because many of the plants that survive there have desirable characteristics.

“The Stans are among the most inland countries in the world,” she said. “They have the coldest winters, the hottest summers. They have mountain ranges. They have plants that are incredibly stressed because of the short growing season and the altitudes. These plants may not grow well, they may not look pretty, but they’re intense with bioactive compounds.”

Kazakhstan is where the apple began. Uzbekistan is the home of Ajuga turkestanica, a plant that produces a steroid-like compound with metabolic-stimulating properties. (The Uzbekistan studies were suspended in 2006 because of political instability there.) Two species of Rhodiola, a plant with potential as an antidepressant, are found in this region, along with Artemisia leucodes, an aromatic plant related to tarragon that may be useful in treating inflammation.

The program also is developing techniques for analyzing the soup of chemical compounds in wild plants. By screening plants in the field, the researchers are able to identify biological traits that might not be detectable after harvesting the plants and bringing them into a lab. This “screens to nature” technique is a departure from the laboratory based, one-enzyme-at-a-time analysis typical of pharmaceutical research, which often fails to detect the therapeutic potential of plants traditionally used by indigenous peoples.

“Twenty-five percent of human drugs are based on a template from a plant,” Lila said. “The pharmaceutical industry is now turning back to researchers in plants to try and have new discoveries,” she said. “They’re also looking more and more outside of our borders to see what works in other countries.”

The GIBEX model supports the country of exploration in several ways, Lila said. It mines and preserves local knowledge of the medicinal properties of native plants. It trains people to appreciate and study their own natural resources. It builds science infrastructure and it reduces “brain drain,” giving educated scientists a reason to stay home and explore their own back yards, she said.

These benefits have produced widespread interest in the developing world, and the program is expanding to Africa and South America. Two major conferences on the screens-to-nature model will be held in Tanzania and South Africa in 2008. And in January a delegation from Illinois and Rutgers will train people at the Maquipucuna Reserve, near Quito, Ecuador, to apply the field techniques. (Rafael Correa, the president of Ecuador, is a U. of I. alumnus, as is the vice president of the Universidad San Francisco de Quito.)

“We are having real partnerships with scientists in these countries,” Lila said. “This way we bring it into the country. We train the country. They stay and they develop their infrastructure there.”

The new approach also is being tried in North America, Lila said. An Illinois graduate student, Josh Kellogg, will bring the screens-to-nature techniques to Native American populations in Alaska and North Dakota. This research, the subject of Kellogg’s master’s thesis, will focus on the anti-diabetic properties of edible plants long used by indigenous people in both states.

Lila also directs ACES Global Connect, the international arm of the U. of I. College of Agricultural, Consumer and Environmental Sciences.

Diana Yates | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/1211bioexploration.html

Further reports about: Build compound developing properties technique

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>