Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new role for miRNA in leukemia

10.12.2007
Scientists here have found that mini-molecules called micro-RNA may play a critical role in the progression of chronic myeloid leukemia (CML) from its more treatable chronic phase to a life-threatening phase, called blast crisis.

Furthermore, they discovered an entirely new function for these molecules. The researchers show that microRNAs can sometimes directly control a protein’s function – not just whether or not the protein is made by the cell, as has been believed.

The study, using cells from CML patients in blast crisis, suggests that certain progenitor white blood cells are kept from maturing when levels of one microRNA, called miR-328, fall abnormally low. Immature white cells then build up in the blood and bone marrow, a telltale sign that the patient has entered the therapy-resistant blast-crisis phase.

The findings are being presented at the 2007 annual meeting of the American Society of Hematology (ASH), Dec. 8-11 in Atlanta.

... more about:
»CML »MicroRNA »blast-crisis »leukemia »miR-328 »progression »role

“If verified, our study suggests that altering microRNA levels might represent a potentially new therapeutic strategy for CML patients who do not benefit from effective targeted agents such as imatinib (Gleevec) and dasatinib (Sprycel),” says principal investigator Danilo Perrotti, assistant professor of molecular virology, immunology and medical genetics and a researcher with the Ohio State University Comprehensive Cancer Center.

“The findings also reveal a new function for microRNAs, which should further our understanding of their role in cancer development and progression, and in normal cells.”

Researchers have known for some time that microRNAs bind to molecules called messenger RNA, which are part of the cell’s protein-making machinery, and in this way help regulate the types and amount of proteins made by cells.

But this study shows for the first time that the microRNA molecules sometimes bind directly with proteins themselves and affect their function.

In this case, a microRNA called miR-328 binds with a protein that, in blast phase CML, prevents immature blood cells from maturing. “We believe that miR-328 acts as a decoy molecule that normally ties up the protein, which enables the white blood cells to mature as they should,” Perrotti says.

During progression from chronic-phase to blast-crisis CML, however, the level of miR-328 falls, allowing the protein to be extremely active. This keeps the progenitor white blood cells from maturing, thus favoring blast-crisis conditions.

“These findings are important because they help us understand the biology of blast-crisis CML, and they may help unravel novel pathways responsible for the initiation and progression of leukemia generally,” Perrotti says.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: CML MicroRNA blast-crisis leukemia miR-328 progression role

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>