Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover new role for miRNA in leukemia

Scientists here have found that mini-molecules called micro-RNA may play a critical role in the progression of chronic myeloid leukemia (CML) from its more treatable chronic phase to a life-threatening phase, called blast crisis.

Furthermore, they discovered an entirely new function for these molecules. The researchers show that microRNAs can sometimes directly control a protein’s function – not just whether or not the protein is made by the cell, as has been believed.

The study, using cells from CML patients in blast crisis, suggests that certain progenitor white blood cells are kept from maturing when levels of one microRNA, called miR-328, fall abnormally low. Immature white cells then build up in the blood and bone marrow, a telltale sign that the patient has entered the therapy-resistant blast-crisis phase.

The findings are being presented at the 2007 annual meeting of the American Society of Hematology (ASH), Dec. 8-11 in Atlanta.

... more about:
»CML »MicroRNA »blast-crisis »leukemia »miR-328 »progression »role

“If verified, our study suggests that altering microRNA levels might represent a potentially new therapeutic strategy for CML patients who do not benefit from effective targeted agents such as imatinib (Gleevec) and dasatinib (Sprycel),” says principal investigator Danilo Perrotti, assistant professor of molecular virology, immunology and medical genetics and a researcher with the Ohio State University Comprehensive Cancer Center.

“The findings also reveal a new function for microRNAs, which should further our understanding of their role in cancer development and progression, and in normal cells.”

Researchers have known for some time that microRNAs bind to molecules called messenger RNA, which are part of the cell’s protein-making machinery, and in this way help regulate the types and amount of proteins made by cells.

But this study shows for the first time that the microRNA molecules sometimes bind directly with proteins themselves and affect their function.

In this case, a microRNA called miR-328 binds with a protein that, in blast phase CML, prevents immature blood cells from maturing. “We believe that miR-328 acts as a decoy molecule that normally ties up the protein, which enables the white blood cells to mature as they should,” Perrotti says.

During progression from chronic-phase to blast-crisis CML, however, the level of miR-328 falls, allowing the protein to be extremely active. This keeps the progenitor white blood cells from maturing, thus favoring blast-crisis conditions.

“These findings are important because they help us understand the biology of blast-crisis CML, and they may help unravel novel pathways responsible for the initiation and progression of leukemia generally,” Perrotti says.

Darrell E. Ward | EurekAlert!
Further information:

Further reports about: CML MicroRNA blast-crisis leukemia miR-328 progression role

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>