Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scripps research scientists discover chemical triggers for aggression in mice

Work could help unravel general neurological basis for behaviors

The work, reported in an advance, online issue of the journal Nature on December 6, 2007, furthers the broad and important goal of elucidating how the neurological system can detect and respond to specific cues in of a sea of potential triggers.

“These results are a really exciting starting place for us to understand how pheromones and the brain can shape behavior,” says team leader Lisa Stowers of the Scripps Research Department of Cell Biology.

Pheromones are chemical cues that are released into the air, secreted from glands, or excreted in urine and picked up by animals of the same species, initiating various social and reproductive behaviors.

“Although the pheromones identified in this research are not produced by humans, the regions of the brain that are tied to behavior are the same for mice and people,” says James F. Battey, Jr., director of the National Institute on Deafness and Other Communication Disorders (NIDCD) of the National Institutes of Health, which provided funding for the study. “Consequently, this research may one day contribute to our understanding of the neural pathways that play a role in human behavior. Much is known about how pheromones work in the insect world, but we know very little about how these chemicals can influence behavior in mammals and other vertebrates.”

The Complex Puzzle of Brain Function

Identifying the chemical pathway of signals that make their way through the neurological system is not easy. One of the challenges for scientists studying brain circuits is that the brain is constantly changing. How a brain detects and then responds to the scent of a particular food, for instance, evolves as the animal learns about that food.

But certain behaviors such as aggression responses between male mice tend to be the same each time they are triggered, suggesting a steady pathway through neurological circuits. So, the Stowers group has focused a research program on understanding the aggression pathway as a general model for brain response.

As a first step in the current study, the group sought to identify specific chemical triggers for aggression in mice, which other researchers had shown involved urine. The Stowers group separated out several classes of chemicals within the urine, then individually swabbed each class onto the backs of castrated mice to determine which could spark an aggressive response by another male. Castrated males lose the ability to elicit aggression on their own, so any such response could be attributed to the added chemicals.

Using this experimental setup, the researchers were able to show specific compounds triggered aggression. Upon examination, the scientists found that these compounds fell into two distinct chemical groups-low molecular weight and high molecular weight proteins.

Particularly intriguing were the high molecular weight compounds, as few high molecular weight compounds exist in urine and none had ever before been shown to act as pheromones. The Stowers group focused on these for the remainder of the study.

Tracing Phermones’ Path

Next, the Stowers lab sought to discover the effect of these high molecular weight compounds on two neurological organs that could potentially convey the pheromone signals to the brain. The first, called the vomeronasal organ (VNO), is located above the roof of the mouth in the nasal cavity. The second is the main olfactory epithelium (MOE), found under the eyeball at the top back portion of the nasal cavity.

Which of these two organs is the main starting point for the aggression pathway is somewhat controversial. Stowers' group had shown in past work that mice genetically altered to lack the VNO did not have aggression responses, suggesting this organ plays a key role, but other researchers had made similar findings with knockout mice lacking the MOE.

To further explore this aspect of signal processing, the Stowers team used an assay of their own design that allows the isolation of individual VNO neurons and MOE neurons and measurement of their firing in response to a given chemical cue. The researchers found that, when exposed to high molecular weight compounds, VNO neurons fired indicating that these are the sensory neurons that mediate aggressive behavior. Moreover, the group was able to provide details about both specific neurons and compounds, and further, identify the subset of VNO neurons that fired in response to four specific high molecular weight proteins acting together.

Stowers adds that while the work elucidates the VNO vs. MOE debate, the current study does not settle it, because the yet-to-be-tested low molecular weight compound class could function via the MOE instead of the VNO. This could make sense because the smaller compounds are more easily volatilized, making it easier for them to reach the MOE, which resides much farther back in the nasal cavity than the VNO.

Interestingly, the four high molecular weight pheromone compounds isolated are from a much larger class of proteins, but an individual mouse only produces four, and the combinations produced differs among individuals. In the past, this four-protein signature was thought to be random, but Stowers says it is possible that different combinations of the proteins could code for different responses.

Keith McKeown | EurekAlert!
Further information:

Further reports about: Aggression Chemical MOE Pheromone Stowers VNO neurological neurons triggers urine

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>