Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists discover chemical triggers for aggression in mice

10.12.2007
Work could help unravel general neurological basis for behaviors

The work, reported in an advance, online issue of the journal Nature on December 6, 2007, furthers the broad and important goal of elucidating how the neurological system can detect and respond to specific cues in of a sea of potential triggers.

“These results are a really exciting starting place for us to understand how pheromones and the brain can shape behavior,” says team leader Lisa Stowers of the Scripps Research Department of Cell Biology.

Pheromones are chemical cues that are released into the air, secreted from glands, or excreted in urine and picked up by animals of the same species, initiating various social and reproductive behaviors.

“Although the pheromones identified in this research are not produced by humans, the regions of the brain that are tied to behavior are the same for mice and people,” says James F. Battey, Jr., director of the National Institute on Deafness and Other Communication Disorders (NIDCD) of the National Institutes of Health, which provided funding for the study. “Consequently, this research may one day contribute to our understanding of the neural pathways that play a role in human behavior. Much is known about how pheromones work in the insect world, but we know very little about how these chemicals can influence behavior in mammals and other vertebrates.”

The Complex Puzzle of Brain Function

Identifying the chemical pathway of signals that make their way through the neurological system is not easy. One of the challenges for scientists studying brain circuits is that the brain is constantly changing. How a brain detects and then responds to the scent of a particular food, for instance, evolves as the animal learns about that food.

But certain behaviors such as aggression responses between male mice tend to be the same each time they are triggered, suggesting a steady pathway through neurological circuits. So, the Stowers group has focused a research program on understanding the aggression pathway as a general model for brain response.

As a first step in the current study, the group sought to identify specific chemical triggers for aggression in mice, which other researchers had shown involved urine. The Stowers group separated out several classes of chemicals within the urine, then individually swabbed each class onto the backs of castrated mice to determine which could spark an aggressive response by another male. Castrated males lose the ability to elicit aggression on their own, so any such response could be attributed to the added chemicals.

Using this experimental setup, the researchers were able to show specific compounds triggered aggression. Upon examination, the scientists found that these compounds fell into two distinct chemical groups-low molecular weight and high molecular weight proteins.

Particularly intriguing were the high molecular weight compounds, as few high molecular weight compounds exist in urine and none had ever before been shown to act as pheromones. The Stowers group focused on these for the remainder of the study.

Tracing Phermones’ Path

Next, the Stowers lab sought to discover the effect of these high molecular weight compounds on two neurological organs that could potentially convey the pheromone signals to the brain. The first, called the vomeronasal organ (VNO), is located above the roof of the mouth in the nasal cavity. The second is the main olfactory epithelium (MOE), found under the eyeball at the top back portion of the nasal cavity.

Which of these two organs is the main starting point for the aggression pathway is somewhat controversial. Stowers' group had shown in past work that mice genetically altered to lack the VNO did not have aggression responses, suggesting this organ plays a key role, but other researchers had made similar findings with knockout mice lacking the MOE.

To further explore this aspect of signal processing, the Stowers team used an assay of their own design that allows the isolation of individual VNO neurons and MOE neurons and measurement of their firing in response to a given chemical cue. The researchers found that, when exposed to high molecular weight compounds, VNO neurons fired indicating that these are the sensory neurons that mediate aggressive behavior. Moreover, the group was able to provide details about both specific neurons and compounds, and further, identify the subset of VNO neurons that fired in response to four specific high molecular weight proteins acting together.

Stowers adds that while the work elucidates the VNO vs. MOE debate, the current study does not settle it, because the yet-to-be-tested low molecular weight compound class could function via the MOE instead of the VNO. This could make sense because the smaller compounds are more easily volatilized, making it easier for them to reach the MOE, which resides much farther back in the nasal cavity than the VNO.

Interestingly, the four high molecular weight pheromone compounds isolated are from a much larger class of proteins, but an individual mouse only produces four, and the combinations produced differs among individuals. In the past, this four-protein signature was thought to be random, but Stowers says it is possible that different combinations of the proteins could code for different responses.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Aggression Chemical MOE Pheromone Stowers VNO neurological neurons triggers urine

More articles from Life Sciences:

nachricht Clock stars: Astrocytes keep time for brain, behavior
27.03.2017 | Washington University in St. Louis

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>