Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET and Bioluminescent Imaging Aid Evaluation of Stem Cells' Potential for New Ways to Treat Disease

10.12.2007
Journal of Nuclear Medicine Articles Focus on "Immense Potential" for Stem Cell-Based Therapies

Using positron emission tomography (PET) imaging with bioluminescence—the light produced by a chemical reaction within an organism—researchers are starting to understand the behavior of transplanted or implanted stem cells that may one day be used to develop new treatments for disease.

According to a study in the December Journal of Nuclear Medicine, scientists have found that using the unique combination of noninvasive PET imaging and optical (bioluminescent) imaging is "an ideal method for tracking stem cell transplantation in small animal models," said Zhenghong Lee, an associate professor of nuclear medicine/radiology and biomedical engineering departments at Case Western Reserve University in Cleveland, Ohio. Researchers were able to use these two imaging techniques to "follow" stem cells for a longer time than previously had been achieved to determine their "fate," explained Lee.

Human mesenchymal stems cells or multipotent marrow stromal cells (hMSCs) are self-renewing adult stem cells that are found in adult donor bone marrow. These stem cells, the body’s blank or "master" cells, may differentiate (or change) into bone, fat tissue and cartilage, said Lee. "The promise of MSC therapies—derived from adult bone marrow and used as a viable and renewable source of stem cells—mandates research leading to a better understanding of the long-term fate and trafficking of transplanted MSCs in animal and human subjects," said the investigator at Case Western’s Center for Stem Cell and Regenerative Medicine. These progenitor cells may have great potential in providing future treatments for heart diseases, brain disorders and cancer and greatly reduce the need to use embryonic stem cells or other fetal tissues.

... more about:
»Cell »PET »SNM »Stem »member »techniques

Specifically, this imaging research could help optimize treatments for individuals with graft-versus-host disease, a life-threatening condition where immune cells from donated marrow or cord blood attack the body of a bone marrow transplant patient, said Lee. Additionally, bone marrow stem cells may help regenerate cells in individuals with heart disease (heart attacks) or brain disorders (strokes, multiple sclerosis) or bone fractures. They could act as a drug delivery vehicle for cancer patients, he added. Much research in these areas still needs to be done "since there are many things that we don’t know about stem cell biology," noted Lee.

For this study, researchers used a fusion protein combining firefly luciferase (a light-emitting substance) for optical imaging, a red fluorescent protein for cell separation and a virus enzyme thymidine kinase for PET imaging in mice to visualize biological processes at the molecular level. "The triple-fusion reporter approach resulted in a reliable method of labeling stem cells for investigation by use of both small-animal PET imaging and bioluminescent imaging," said Lee. PET is a powerful molecular imaging procedure that noninvasively demonstrates the function of genes, cells and organs/tissues, providing information about the biochemistry processes, metabolic activities and body functions. PET scans use very small amounts of radioactive pharmaceuticals that are detected or "traced" by a special type of camera that works with computers to provide quantitative pictures of the area of the body being imaged. To image dim light from bioluminescence—the process of light emission in living organisms—researchers use an ultra-sensitive camera from an external vantage point. This research is detailed in "Imaging of Mesenchymal Stem Cell Transplant by Bioluminescence and PET."

In a related Journal of Nuclear Medicine article, the growing number of exciting animal and preclinical studies are explored, revealing the "immense potential in stem cell-based therapies, particularly in the area of treating cardiovascular diseases," said Joseph C. Wu, assistant professor of cardiovascular medicine and radiology at Stanford University School of Medicine in Stanford, Calif. Wu and co-author Sarah J. Zhang review the basic principles of current techniques for cardiac stem cell tracking, compare the relative advantages and disadvantages of these imaging modalities and discuss the future prospect of cardiac stem cell trafficking. "Comparison of Imaging Techniques for Tracking Cardiac Stem Cell Therapy" is the first article in the journal’s new monthly feature called "Focus on Molecular Imaging."

"The unique information obtained from molecular imaging techniques is particularly helpful in evaluating cell engraftment and may shed light on the mixed findings regarding stem cell–based therapy," said Wu. "The current noninvasive imaging approaches for tracking stem cells in vivo include imaging with magnetic particles, radionuclides, quantum dots, reporter genes, and fluorescence and bioluminescence imaging," he added. "It is possible that a tailored combination of two or more techniques may provide the most ideal information profile for clinical applications," concluded Wu.

Additional co-authors of "Imaging of Mesenchymal Stem Cell Transplant by Bioluminescence and PET" include Zachary Love, nuclear medicine/radiology department; Fangjing Wang and Nicholas Salem, biomedical engineering department; Amad Awadallah, orthopedics department, James Dennis, orthopedics department and Center for Stem Cell and Regenerative Medicine, and Yuan Lin, hematology/oncology department, all at Case Western Reserve University in Cleveland, Ohio; and Andrew Weisenberger and Stan Majewski, Thomas Jefferson National Accelerator Facility, Newport News, Va.

"Comparison of Imaging Techniques for Tracking Cardiac Stem Cell Therapy" was co-written by Wu and Sarah J. Zhang, Stanford University School of Medicine, Stanford, Calif.

Credentialed press: To obtain a copy of these articles—and online access to the Journal of Nuclear Medicine— please contact Maryann Verrillo by phone at (703) 652-6773 or send an e-mail to mverrillo@snm.org. Current and past issues of the Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org. Print copies can be obtained by contacting the SNM Service Center, 1850 Samuel Morse Drive, Reston, VA 20190-5316; phone (800) 513-6853; e-mail servicecenter@snm.org; fax (703) 708-9015. A subscription to the journal is an SNM member benefit.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and professional organization of more than 16,000 members dedicated to promoting the science, technology and practical applications of molecular and nuclear imaging to diagnose, manage and treat diseases in women, men and children. Founded more than 50 years ago, SNM continues to provide essential resources for health care practitioners and patients; publish the most prominent peer-reviewed journal in the field (Journal of Nuclear Medicine); host the premier annual meeting for medical imaging; sponsor research grants, fellowships and awards; and train physicians, technologists, scientists, physicists, chemists and radiopharmacists in state-of-the-art imaging procedures and advances. SNM members have introduced—and continue to explore—biological and technological innovations in medicine that noninvasively investigate the molecular basis of diseases, benefiting countless generations of patients. SNM is based in Reston, Va.; additional information can be found online at http://www.snm.org.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

Further reports about: Cell PET SNM Stem member techniques

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>