Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET and Bioluminescent Imaging Aid Evaluation of Stem Cells' Potential for New Ways to Treat Disease

10.12.2007
Journal of Nuclear Medicine Articles Focus on "Immense Potential" for Stem Cell-Based Therapies

Using positron emission tomography (PET) imaging with bioluminescence—the light produced by a chemical reaction within an organism—researchers are starting to understand the behavior of transplanted or implanted stem cells that may one day be used to develop new treatments for disease.

According to a study in the December Journal of Nuclear Medicine, scientists have found that using the unique combination of noninvasive PET imaging and optical (bioluminescent) imaging is "an ideal method for tracking stem cell transplantation in small animal models," said Zhenghong Lee, an associate professor of nuclear medicine/radiology and biomedical engineering departments at Case Western Reserve University in Cleveland, Ohio. Researchers were able to use these two imaging techniques to "follow" stem cells for a longer time than previously had been achieved to determine their "fate," explained Lee.

Human mesenchymal stems cells or multipotent marrow stromal cells (hMSCs) are self-renewing adult stem cells that are found in adult donor bone marrow. These stem cells, the body’s blank or "master" cells, may differentiate (or change) into bone, fat tissue and cartilage, said Lee. "The promise of MSC therapies—derived from adult bone marrow and used as a viable and renewable source of stem cells—mandates research leading to a better understanding of the long-term fate and trafficking of transplanted MSCs in animal and human subjects," said the investigator at Case Western’s Center for Stem Cell and Regenerative Medicine. These progenitor cells may have great potential in providing future treatments for heart diseases, brain disorders and cancer and greatly reduce the need to use embryonic stem cells or other fetal tissues.

... more about:
»Cell »PET »SNM »Stem »member »techniques

Specifically, this imaging research could help optimize treatments for individuals with graft-versus-host disease, a life-threatening condition where immune cells from donated marrow or cord blood attack the body of a bone marrow transplant patient, said Lee. Additionally, bone marrow stem cells may help regenerate cells in individuals with heart disease (heart attacks) or brain disorders (strokes, multiple sclerosis) or bone fractures. They could act as a drug delivery vehicle for cancer patients, he added. Much research in these areas still needs to be done "since there are many things that we don’t know about stem cell biology," noted Lee.

For this study, researchers used a fusion protein combining firefly luciferase (a light-emitting substance) for optical imaging, a red fluorescent protein for cell separation and a virus enzyme thymidine kinase for PET imaging in mice to visualize biological processes at the molecular level. "The triple-fusion reporter approach resulted in a reliable method of labeling stem cells for investigation by use of both small-animal PET imaging and bioluminescent imaging," said Lee. PET is a powerful molecular imaging procedure that noninvasively demonstrates the function of genes, cells and organs/tissues, providing information about the biochemistry processes, metabolic activities and body functions. PET scans use very small amounts of radioactive pharmaceuticals that are detected or "traced" by a special type of camera that works with computers to provide quantitative pictures of the area of the body being imaged. To image dim light from bioluminescence—the process of light emission in living organisms—researchers use an ultra-sensitive camera from an external vantage point. This research is detailed in "Imaging of Mesenchymal Stem Cell Transplant by Bioluminescence and PET."

In a related Journal of Nuclear Medicine article, the growing number of exciting animal and preclinical studies are explored, revealing the "immense potential in stem cell-based therapies, particularly in the area of treating cardiovascular diseases," said Joseph C. Wu, assistant professor of cardiovascular medicine and radiology at Stanford University School of Medicine in Stanford, Calif. Wu and co-author Sarah J. Zhang review the basic principles of current techniques for cardiac stem cell tracking, compare the relative advantages and disadvantages of these imaging modalities and discuss the future prospect of cardiac stem cell trafficking. "Comparison of Imaging Techniques for Tracking Cardiac Stem Cell Therapy" is the first article in the journal’s new monthly feature called "Focus on Molecular Imaging."

"The unique information obtained from molecular imaging techniques is particularly helpful in evaluating cell engraftment and may shed light on the mixed findings regarding stem cell–based therapy," said Wu. "The current noninvasive imaging approaches for tracking stem cells in vivo include imaging with magnetic particles, radionuclides, quantum dots, reporter genes, and fluorescence and bioluminescence imaging," he added. "It is possible that a tailored combination of two or more techniques may provide the most ideal information profile for clinical applications," concluded Wu.

Additional co-authors of "Imaging of Mesenchymal Stem Cell Transplant by Bioluminescence and PET" include Zachary Love, nuclear medicine/radiology department; Fangjing Wang and Nicholas Salem, biomedical engineering department; Amad Awadallah, orthopedics department, James Dennis, orthopedics department and Center for Stem Cell and Regenerative Medicine, and Yuan Lin, hematology/oncology department, all at Case Western Reserve University in Cleveland, Ohio; and Andrew Weisenberger and Stan Majewski, Thomas Jefferson National Accelerator Facility, Newport News, Va.

"Comparison of Imaging Techniques for Tracking Cardiac Stem Cell Therapy" was co-written by Wu and Sarah J. Zhang, Stanford University School of Medicine, Stanford, Calif.

Credentialed press: To obtain a copy of these articles—and online access to the Journal of Nuclear Medicine— please contact Maryann Verrillo by phone at (703) 652-6773 or send an e-mail to mverrillo@snm.org. Current and past issues of the Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org. Print copies can be obtained by contacting the SNM Service Center, 1850 Samuel Morse Drive, Reston, VA 20190-5316; phone (800) 513-6853; e-mail servicecenter@snm.org; fax (703) 708-9015. A subscription to the journal is an SNM member benefit.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and professional organization of more than 16,000 members dedicated to promoting the science, technology and practical applications of molecular and nuclear imaging to diagnose, manage and treat diseases in women, men and children. Founded more than 50 years ago, SNM continues to provide essential resources for health care practitioners and patients; publish the most prominent peer-reviewed journal in the field (Journal of Nuclear Medicine); host the premier annual meeting for medical imaging; sponsor research grants, fellowships and awards; and train physicians, technologists, scientists, physicists, chemists and radiopharmacists in state-of-the-art imaging procedures and advances. SNM members have introduced—and continue to explore—biological and technological innovations in medicine that noninvasively investigate the molecular basis of diseases, benefiting countless generations of patients. SNM is based in Reston, Va.; additional information can be found online at http://www.snm.org.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

Further reports about: Cell PET SNM Stem member techniques

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>