Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET and Bioluminescent Imaging Aid Evaluation of Stem Cells' Potential for New Ways to Treat Disease

10.12.2007
Journal of Nuclear Medicine Articles Focus on "Immense Potential" for Stem Cell-Based Therapies

Using positron emission tomography (PET) imaging with bioluminescence—the light produced by a chemical reaction within an organism—researchers are starting to understand the behavior of transplanted or implanted stem cells that may one day be used to develop new treatments for disease.

According to a study in the December Journal of Nuclear Medicine, scientists have found that using the unique combination of noninvasive PET imaging and optical (bioluminescent) imaging is "an ideal method for tracking stem cell transplantation in small animal models," said Zhenghong Lee, an associate professor of nuclear medicine/radiology and biomedical engineering departments at Case Western Reserve University in Cleveland, Ohio. Researchers were able to use these two imaging techniques to "follow" stem cells for a longer time than previously had been achieved to determine their "fate," explained Lee.

Human mesenchymal stems cells or multipotent marrow stromal cells (hMSCs) are self-renewing adult stem cells that are found in adult donor bone marrow. These stem cells, the body’s blank or "master" cells, may differentiate (or change) into bone, fat tissue and cartilage, said Lee. "The promise of MSC therapies—derived from adult bone marrow and used as a viable and renewable source of stem cells—mandates research leading to a better understanding of the long-term fate and trafficking of transplanted MSCs in animal and human subjects," said the investigator at Case Western’s Center for Stem Cell and Regenerative Medicine. These progenitor cells may have great potential in providing future treatments for heart diseases, brain disorders and cancer and greatly reduce the need to use embryonic stem cells or other fetal tissues.

... more about:
»Cell »PET »SNM »Stem »member »techniques

Specifically, this imaging research could help optimize treatments for individuals with graft-versus-host disease, a life-threatening condition where immune cells from donated marrow or cord blood attack the body of a bone marrow transplant patient, said Lee. Additionally, bone marrow stem cells may help regenerate cells in individuals with heart disease (heart attacks) or brain disorders (strokes, multiple sclerosis) or bone fractures. They could act as a drug delivery vehicle for cancer patients, he added. Much research in these areas still needs to be done "since there are many things that we don’t know about stem cell biology," noted Lee.

For this study, researchers used a fusion protein combining firefly luciferase (a light-emitting substance) for optical imaging, a red fluorescent protein for cell separation and a virus enzyme thymidine kinase for PET imaging in mice to visualize biological processes at the molecular level. "The triple-fusion reporter approach resulted in a reliable method of labeling stem cells for investigation by use of both small-animal PET imaging and bioluminescent imaging," said Lee. PET is a powerful molecular imaging procedure that noninvasively demonstrates the function of genes, cells and organs/tissues, providing information about the biochemistry processes, metabolic activities and body functions. PET scans use very small amounts of radioactive pharmaceuticals that are detected or "traced" by a special type of camera that works with computers to provide quantitative pictures of the area of the body being imaged. To image dim light from bioluminescence—the process of light emission in living organisms—researchers use an ultra-sensitive camera from an external vantage point. This research is detailed in "Imaging of Mesenchymal Stem Cell Transplant by Bioluminescence and PET."

In a related Journal of Nuclear Medicine article, the growing number of exciting animal and preclinical studies are explored, revealing the "immense potential in stem cell-based therapies, particularly in the area of treating cardiovascular diseases," said Joseph C. Wu, assistant professor of cardiovascular medicine and radiology at Stanford University School of Medicine in Stanford, Calif. Wu and co-author Sarah J. Zhang review the basic principles of current techniques for cardiac stem cell tracking, compare the relative advantages and disadvantages of these imaging modalities and discuss the future prospect of cardiac stem cell trafficking. "Comparison of Imaging Techniques for Tracking Cardiac Stem Cell Therapy" is the first article in the journal’s new monthly feature called "Focus on Molecular Imaging."

"The unique information obtained from molecular imaging techniques is particularly helpful in evaluating cell engraftment and may shed light on the mixed findings regarding stem cell–based therapy," said Wu. "The current noninvasive imaging approaches for tracking stem cells in vivo include imaging with magnetic particles, radionuclides, quantum dots, reporter genes, and fluorescence and bioluminescence imaging," he added. "It is possible that a tailored combination of two or more techniques may provide the most ideal information profile for clinical applications," concluded Wu.

Additional co-authors of "Imaging of Mesenchymal Stem Cell Transplant by Bioluminescence and PET" include Zachary Love, nuclear medicine/radiology department; Fangjing Wang and Nicholas Salem, biomedical engineering department; Amad Awadallah, orthopedics department, James Dennis, orthopedics department and Center for Stem Cell and Regenerative Medicine, and Yuan Lin, hematology/oncology department, all at Case Western Reserve University in Cleveland, Ohio; and Andrew Weisenberger and Stan Majewski, Thomas Jefferson National Accelerator Facility, Newport News, Va.

"Comparison of Imaging Techniques for Tracking Cardiac Stem Cell Therapy" was co-written by Wu and Sarah J. Zhang, Stanford University School of Medicine, Stanford, Calif.

Credentialed press: To obtain a copy of these articles—and online access to the Journal of Nuclear Medicine— please contact Maryann Verrillo by phone at (703) 652-6773 or send an e-mail to mverrillo@snm.org. Current and past issues of the Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org. Print copies can be obtained by contacting the SNM Service Center, 1850 Samuel Morse Drive, Reston, VA 20190-5316; phone (800) 513-6853; e-mail servicecenter@snm.org; fax (703) 708-9015. A subscription to the journal is an SNM member benefit.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and professional organization of more than 16,000 members dedicated to promoting the science, technology and practical applications of molecular and nuclear imaging to diagnose, manage and treat diseases in women, men and children. Founded more than 50 years ago, SNM continues to provide essential resources for health care practitioners and patients; publish the most prominent peer-reviewed journal in the field (Journal of Nuclear Medicine); host the premier annual meeting for medical imaging; sponsor research grants, fellowships and awards; and train physicians, technologists, scientists, physicists, chemists and radiopharmacists in state-of-the-art imaging procedures and advances. SNM members have introduced—and continue to explore—biological and technological innovations in medicine that noninvasively investigate the molecular basis of diseases, benefiting countless generations of patients. SNM is based in Reston, Va.; additional information can be found online at http://www.snm.org.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

Further reports about: Cell PET SNM Stem member techniques

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>