Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penny for Your Thoughts

07.12.2007
University of Leicester researchers discover they can read thoughts to decipher what a person is actually seeing

Following ground-breaking research showing that neurons in the human brain respond in an abstract manner to particular individuals or objects, University of Leicester researchers have now discovered that, from the firing of this type of neuron, they can tell what a person is actually seeing.

The original research by Dr R Quian Quiroga, of the University’s Department of Engineering, showed that one neuron fired to, for instance, Jennifer Aniston, another one to Halle Berry, another one to the Sydney Opera House, etc.

The responses were abstract. For example, the neuron firing to Halle Berry responded to several different pictures of her and even to the letters of her name, but not to other people or names.

... more about:
»Neuron »Neuronal »Picture »Quian »predict

This result, published in Nature in 2005 and selected as one of the top 100 scientific stories of the year by Discover Magazine, came from data from patients suffering from epilepsy. As candidates for epilepsy surgery, they are implanted with intracranial electrodes to determine as accurately as possible the area where the seizures originate. From that, clinicians can evaluate the potential outcome of curative surgery.

Dr Quian Quiroga’s latest research, which has appeared in the Journal of Neurophysiology, follows on from this.

Dr Quian Quiroga explained: “For example, if the 'Jennifer Aniston neuron' increases its firing then we can predict that the subject is seeing Jennifer Aniston. If the 'Halle Berry neuron' fires, then we can predict that the subject is seeing Halle Berry, and so on.

“To do this, we used and optimised a 'decoding algorithms', which is a mathematical method to infer the stimulus from the neuronal firing. We also needed to optimise our recording and data processing tools to record simultaneously from as many neurons as possible. Currently we are able to record simultaneously from up to 100 neurons in the human brain.

“In these experiments we presented a large database of pictures, and discovered that we can predict what picture the subject is seeing far above chance. So, in simple words, we can read the human thought from the neuronal activity.

“Once we reached this point, we then asked what are the most fundamental features of the neuronal firing that allowed us to make this predictions. This gave us the chance of studying basic principles of neural coding; i.e. how information is stored by neurons in the brain.

“For example, we found that there is a very limited time window in the neuronal firing that contains most of the information used for such predictions. Interestingly, neurons fired only 4 spikes in average during this time window. So, in another words, only 4 spikes of a few neurons are already telling us what the patient is seeing.”

Potential applications of this discovery include the development of Neural Prosthetic devices to be used by paralysed patients or amputees. A patient with a lesion in the spinal cord (as with the late Christopher Reeves), can still think about reaching a cup of tea with his arm, but this order is not transmitted to the muscles.

The idea of Neural Prostheses is to read these commands directly from the brain and transmit them to bionic devices such as a robotic arm that the patient could control directly from the brain.

Dr Quian Quiroga’s work showing that it is possible to read signals from the brain is a good step forward in this direction. But there are still clinical and ethical issues that have to be resolved before Neural Prosthetic devices can be applied in humans.

In particular, these would involve invasive surgery, which would have to be justified by a clear improvement for the patient before it could be undertaken.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

Further reports about: Neuron Neuronal Picture Quian predict

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>