Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penny for Your Thoughts

07.12.2007
University of Leicester researchers discover they can read thoughts to decipher what a person is actually seeing

Following ground-breaking research showing that neurons in the human brain respond in an abstract manner to particular individuals or objects, University of Leicester researchers have now discovered that, from the firing of this type of neuron, they can tell what a person is actually seeing.

The original research by Dr R Quian Quiroga, of the University’s Department of Engineering, showed that one neuron fired to, for instance, Jennifer Aniston, another one to Halle Berry, another one to the Sydney Opera House, etc.

The responses were abstract. For example, the neuron firing to Halle Berry responded to several different pictures of her and even to the letters of her name, but not to other people or names.

... more about:
»Neuron »Neuronal »Picture »Quian »predict

This result, published in Nature in 2005 and selected as one of the top 100 scientific stories of the year by Discover Magazine, came from data from patients suffering from epilepsy. As candidates for epilepsy surgery, they are implanted with intracranial electrodes to determine as accurately as possible the area where the seizures originate. From that, clinicians can evaluate the potential outcome of curative surgery.

Dr Quian Quiroga’s latest research, which has appeared in the Journal of Neurophysiology, follows on from this.

Dr Quian Quiroga explained: “For example, if the 'Jennifer Aniston neuron' increases its firing then we can predict that the subject is seeing Jennifer Aniston. If the 'Halle Berry neuron' fires, then we can predict that the subject is seeing Halle Berry, and so on.

“To do this, we used and optimised a 'decoding algorithms', which is a mathematical method to infer the stimulus from the neuronal firing. We also needed to optimise our recording and data processing tools to record simultaneously from as many neurons as possible. Currently we are able to record simultaneously from up to 100 neurons in the human brain.

“In these experiments we presented a large database of pictures, and discovered that we can predict what picture the subject is seeing far above chance. So, in simple words, we can read the human thought from the neuronal activity.

“Once we reached this point, we then asked what are the most fundamental features of the neuronal firing that allowed us to make this predictions. This gave us the chance of studying basic principles of neural coding; i.e. how information is stored by neurons in the brain.

“For example, we found that there is a very limited time window in the neuronal firing that contains most of the information used for such predictions. Interestingly, neurons fired only 4 spikes in average during this time window. So, in another words, only 4 spikes of a few neurons are already telling us what the patient is seeing.”

Potential applications of this discovery include the development of Neural Prosthetic devices to be used by paralysed patients or amputees. A patient with a lesion in the spinal cord (as with the late Christopher Reeves), can still think about reaching a cup of tea with his arm, but this order is not transmitted to the muscles.

The idea of Neural Prostheses is to read these commands directly from the brain and transmit them to bionic devices such as a robotic arm that the patient could control directly from the brain.

Dr Quian Quiroga’s work showing that it is possible to read signals from the brain is a good step forward in this direction. But there are still clinical and ethical issues that have to be resolved before Neural Prosthetic devices can be applied in humans.

In particular, these would involve invasive surgery, which would have to be justified by a clear improvement for the patient before it could be undertaken.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

Further reports about: Neuron Neuronal Picture Quian predict

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>