Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanorings

06.12.2007
Variable nanocomposites: Small, rigid DNA rings with a gap for the incorporation of functional molecules

What appear under an atomic force microscope to be tiny rings with little bits missing are actually nanoscopic rings made of double-stranded DNA with a little gap in the form of a short single-stranded fragment. As Michael Famulok and his team from the University of Bonn, Germany, explain in the journal Angewandte Chemie , this gap is a place to attach other molecules that have the potential to transform the rings into versatile nanocomposites for various applications.

The programmable aggregation of molecular building blocks into structures with higher order plays a key role in the construction of nanomaterials. Nucleic acids are interesting building block candidates, being easy to synthesize and exhibiting unique molecular recognition characteristics. The difficulty lies in the fact that the construction of defined two- or three-dimensional geometries requires rigid building blocks. However, DNA molecules are normally flexible structures.

“From the structural point of view, miniature rings represent the simplest form for a rigid object made of DNA,” says Famulok. His team thus took on the challenge of producing DNA molecules with a smooth circular structure, free of ring deformations, twists, or knots. This was not an easy endeavor. DNA is usually found in the form of a double strand with a helical twist and can, if it is too short, close on itself to form a ring. On the other hand, if the ring gets too large, it is no longer rigid. Famulok and his team have now succeeded, by careful selection of the sequence and number of nucleotides as well as a clever synthetic route, in producing the desired rigid rings.

... more about:
»DNA »Famulok »Strand »rigid

Even better, the researchers were able to build a “gap” into their rings—a short sequence that does not occur in normal base pairing, instead exiting as a single-stranded segment. This should make it possible to “fit” the ring with tailored functionality for special applications. All that needs to be done is to produce a short single strand of DNA complementary to the single-stranded part of the ring and to attach it to a molecule with the desired properties. This single strand then fits perfectly into the gap. This allows the ring to be equipped as desired, depending on the requirements of the application in question. For example, it can be given “anchors” that precisely bind the rings to other components.

“Our new, uncomplicated method for the production of rigid DNA nanorings with variable, tailor-made functionality opens new pathways for the construction of DNA objects with higher levels of organization,” Famulok is convinced.

Author: Michael Famulok, Universität Bonn (Germany), http://www.chembiol.uni-bonn.de/index-e.html

Title: DNA Minicircles with Gaps for Versatile Functionalization

Angewandte Chemie International Edition, doi: 10.1002/anie.200704004

Michael Famulok | Angewandte Chemie
Further information:
http://www.chembiol.uni-bonn.de/index-e.html
http://pressroom.angewandte.org

Further reports about: DNA Famulok Strand rigid

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>