Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanorings

06.12.2007
Variable nanocomposites: Small, rigid DNA rings with a gap for the incorporation of functional molecules

What appear under an atomic force microscope to be tiny rings with little bits missing are actually nanoscopic rings made of double-stranded DNA with a little gap in the form of a short single-stranded fragment. As Michael Famulok and his team from the University of Bonn, Germany, explain in the journal Angewandte Chemie , this gap is a place to attach other molecules that have the potential to transform the rings into versatile nanocomposites for various applications.

The programmable aggregation of molecular building blocks into structures with higher order plays a key role in the construction of nanomaterials. Nucleic acids are interesting building block candidates, being easy to synthesize and exhibiting unique molecular recognition characteristics. The difficulty lies in the fact that the construction of defined two- or three-dimensional geometries requires rigid building blocks. However, DNA molecules are normally flexible structures.

“From the structural point of view, miniature rings represent the simplest form for a rigid object made of DNA,” says Famulok. His team thus took on the challenge of producing DNA molecules with a smooth circular structure, free of ring deformations, twists, or knots. This was not an easy endeavor. DNA is usually found in the form of a double strand with a helical twist and can, if it is too short, close on itself to form a ring. On the other hand, if the ring gets too large, it is no longer rigid. Famulok and his team have now succeeded, by careful selection of the sequence and number of nucleotides as well as a clever synthetic route, in producing the desired rigid rings.

... more about:
»DNA »Famulok »Strand »rigid

Even better, the researchers were able to build a “gap” into their rings—a short sequence that does not occur in normal base pairing, instead exiting as a single-stranded segment. This should make it possible to “fit” the ring with tailored functionality for special applications. All that needs to be done is to produce a short single strand of DNA complementary to the single-stranded part of the ring and to attach it to a molecule with the desired properties. This single strand then fits perfectly into the gap. This allows the ring to be equipped as desired, depending on the requirements of the application in question. For example, it can be given “anchors” that precisely bind the rings to other components.

“Our new, uncomplicated method for the production of rigid DNA nanorings with variable, tailor-made functionality opens new pathways for the construction of DNA objects with higher levels of organization,” Famulok is convinced.

Author: Michael Famulok, Universität Bonn (Germany), http://www.chembiol.uni-bonn.de/index-e.html

Title: DNA Minicircles with Gaps for Versatile Functionalization

Angewandte Chemie International Edition, doi: 10.1002/anie.200704004

Michael Famulok | Angewandte Chemie
Further information:
http://www.chembiol.uni-bonn.de/index-e.html
http://pressroom.angewandte.org

Further reports about: DNA Famulok Strand rigid

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>