Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising Cell Transplantation after Heart Attack

06.12.2007
Scientists from the University of Bonn, together with US colleagues, have achieved a promising step forward in cardiac infarction research. In the coming issue of the journal 'Nature' they report about an experiment in which they implanted embryonic heart cells in mice after a heart attack. These test animals were protected against life-threatening cardiac arrhythmia. These so called ventricular tachycardias are the most common cause of death after a heart attack.

During a heart attack, irreparable damage is done to the heart muscle as a result of defective circulation. The feared consequence is what is known as ventricular tachycardias and the ventricular fibrillation that results from that. In this case, the hollow muscle's contraction is not coordinated and contracts at a high pulse rate. The frequency can reach more than 300 beats per minute. This condition is life-threatening because the blood cannot be pumped effectively via the blood circulation.

By implanting embryonic myocardial cells, this risk can apparently be drastically reduced, at least in mice. These are the results of scientists from the universities of Bonn, Cornell and Pittsburgh, published in the journal 'Nature'. The scientists treated mice after a heart attack with these cells and then tried to cause ventricular tachycardias by means of electrical stimulation. Only with slightly over one third of the mice did this arrhythmia occur just as rarely as with thoroughly healthy rodents. By contrast, with untreated mice after a heart attack this ratio was almost 100 per cent.

A few thousand cells are sufficient

Replacing the dead heart tissue with new muscle cells is not a completely new idea. Up to now, the doctors focused especially on the reconstruction of the muscular function. After all, several hundred million muscle cells perish during a heart attack. The result is often heart failure, which can also be fatal. 'This weakness of the cardiac muscle cannot be resolved with spare tissue, even today,' Professor Bernd K. Fleischmann from the Institute of Physiology 1 explains. 'Too few implanted cells actually take on a permanent muscular function. For the prevention of cardiac arrhythmia, even a few thousand cells seem to be sufficient.'

With the skeletal muscular cells which were used for the therapy up to now, that actually does not work. 'They do not reduce the risk of a ventricular tachycardia. The opposite is true: the severity of the cardiac arrhythmia even increased in our study when we used skeletal muscular cells,' the Bonn cardiologist Professor Thorsten Lewalter emphasises. The reason for this is that for an ordered contraction it is important that the cells in the heart muscle communicate with another. To a certain extent, they pass on the 'pulse signal' to their neighbours for this. 'Real' heart muscle cells naturally have a special information channel for this purpose. We're talking about a cellular protein called Connexin 43. 'We were able to show that the embryonic myocardial cells which we implanted synthesise this protein Connexin 43, thereby allowing the electrical signal to be coupled into the infarction scar,' the heart surgeon Dr. Wilhelm Röll and physiologist Dr. Phillip Sasse explain.

New therapeutic approach

Scientists from the Institute of Genetics were successful in changing skeletal muscular cells in such a way that they also produced Connexin 43. The researchers also successfully tested these cells on mice that had had a heart attack. The risk level of a ventricular tachycardia fell to a level similar to that in healthy animals. This discovery potentially opens the door to a completely new therapeutic approach. With humans it is nevertheless not possible, for ethical reasons, to make use of embryonic heart muscle cells. 'But you could use stem cells from the leg muscle of a heart attack patient and install the gene for Connexin 43 in them,' says Professor Michael I. Kotlikoff from Cornell University in Ithaca. 'These modified cells could be then implanted in the damaged heart.' Rejection of the cells is unlikely in this case since the body would be dealing with its own (albeit genetically upgraded) cells. Bernd Fleischmann also talks about an important intermediate stage but urges caution about inflated hopes. 'Our results are valid for mice hearts,' he clarifies. 'Whether it works this way with humans has yet to be seen.'

The fact that the study was so successful was also due to the interdisciplinary nature of the project. With the Institute of Physiology 1 at the Life&Brain Centre, the Departments of Cardiosurgery and Internal Medicine II, as well as the Institutes of Genetics and Pharmacology, five research groups were involved in Bonn alone.

Prof. Dr. Bernd K. Fleischmann | alfa
Further information:
http://www.uni-bonn.de

Further reports about: Arrhythmia Connexin Connexin 43 Embryonic attack implanted tachycardia ventricular

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>